Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T17:26:55.125Z Has data issue: false hasContentIssue false

The total deuterium abundance in the local Galactic disk: decisions and implications

Published online by Cambridge University Press:  23 April 2010

Jeffrey L. Linsky*
Affiliation:
JILA, University of Colorado and NIST, Campus Box 440, Boulder, CO 80309-0440, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Analyses of FUSE spacecraft spectra have provided measurements of D/H in the gas phase of the interstellar medium for many lines of sight extending to several kpc from the Sun. These measurements, together with the earlier Copernicus, HST, and IMAPS data, show a wide range of D/H values that have challenged both observers and chemical evolution modellers. I believe that the best explanation for the diverse D/H measurements is that deuterium can be sequestered on to carbonaceous grains and PAH molecules and thereby removed from the interstellar gas. Grain destruction can raise the gas phase D/H value to approximately the total D/H value. Supernovae and stellar winds, however, can decrease the total D/H value along lines of sight on time scales less than mixing time scales. I will summarize the theoretical and observational arguments for this model and estimate the most likely range for the total D/H in the local Galactic disk. This range in total D/H presents a constraint on realistic Galactic chemical evolution models or the primordial value of D/H or both.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Chiappini, C., Renda, A., & Matteucci, F. 2002, A&A, 395, 789Google Scholar
Draine, B. T. 2003, ARAA, 41, 241CrossRefGoogle Scholar
Draine, B. T. 2006, in McWilliam, A. & Rauch, M. (eds.), Origin and Evolution of the Elements, (Cambridge Univ. Press), p. 317Google Scholar
Dunkley, J. et al. 2009, ApJS, 180, 306CrossRefGoogle Scholar
Dupuis, J., Oliveira, C. M., Hébrard, G. H., Moos, H. W., & Sonnentrucker, P. 2009, ApJ, 690, 1045CrossRefGoogle Scholar
Hébrard, G. 2010, in Charbonnel, C., Tosi, M., Primas, F., & Chiappini, C. (eds), Light Elements in the Universe (Cambridge Univ. Press), this volumeGoogle Scholar
Jura, M. 1982, in Kondo, Y., Meade, J. M., & Chapman, R. D. (eds), Advances in UV Astronomy: 4 Years of IUE Research, (NASA CP 2238), p. 54Google Scholar
Kruk, J. W., Oliveira, C., Sembach, K. R., & Savage, B. D. 2006, in Sonneborn, G., Moos, H. W., & Andersson, B.-G. (eds), Astrophysics in the Far Ultraviolet, Five Years of Discovery with FUSE, ASP-CS, 348, p. 85Google Scholar
Lallement, R., Welsh, B., Vergeley, J. L., Crifo, F., & Sfeir, D. 2003, A&A, 411, 447Google Scholar
Lecavelier des Etangs, A., Hébrard, G., & Williger, G. M. in Sonneborn, G., Moos, H. W., & Andersson, B.-G. (eds), Astrophysics in the Far Ultraviolet, Five Years of Discovery with FUSE, ASP-CS, 348, p. 88Google Scholar
Linsky, J. L. et al. 2006, ApJ, 647, 1106CrossRefGoogle Scholar
Oliveira, C. M. & Hébrard, G. 2006, ApJ, 653, 345CrossRefGoogle Scholar
Pettini, M., Zych, B. J., Murphy, M. T., Lewis, A., & Steidel, C. C. 2008, MNRAS, 391, 1499CrossRefGoogle Scholar
Redfield, S. & Linsky, J. L. 2008, ApJ, 673, 283CrossRefGoogle Scholar
Prodanović, T. & Fields, B. D. 2008, J. Cosmology & Astroparticle Physics, 09, 003CrossRefGoogle Scholar
Romano, D., Tosi, M., Chiappini, C., & Matteucci, F. 2006, MNRAS, 369, 295CrossRefGoogle Scholar
Sfeir, D. M., Lallement, R., Crifo, F., & Welsh, B. Y. 1999, A&A, 346, 785Google Scholar
Steigman, G. 2010, in Charbonnel, C., Tosi, M., Primas, F., & Chiappini, C. (eds), Light Elements in the Universe (Cambridge Univ. Press), this volumeGoogle Scholar
Welsh, B. Y. & Shelton, R. L. 2009, AP&SS, 323, 1Google Scholar