Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T17:10:13.492Z Has data issue: false hasContentIssue false

TODCOR – Two-Dimensional Correlation

Published online by Cambridge University Press:  23 April 2012

Shay Zucker*
Affiliation:
Department of Geophysics and Planetary Sciences, Raymond and Beverly Sackler Faculty of Exact SciencesTel Aviv University, 69978 Tel Aviv, Israel email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

TODCOR is a TwO-Dimensional CORrelation technique to measure radial velocities of the two components of a spectroscopic binary. Assuming the spectra of the two components are known, the technique correlates an observed binary spectrum against a combination of the two spectra with different shifts. TODCOR measures simultaneously the radial velocities of the two stars by finding the maximum correlation. The main use of the technique has been to turn single-lined binaries into double-lined systems. This helps to explore the binary mass-ratio distribution, especially the low-mass regime, where the secondaries are usually very faint and therefore hard to detect. The technique has been generalized to study multi-order spectra, and also triple- and quadruple-lined systems. It has several applications in studying extrasolar planets and in the future may even help to dynamically measure stellar masses of binaries through relativistc effects.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Hadrava, P. 1995, A&AS, 114, 393Google Scholar
Ilijic, S., Hensberge, H., & Pavlovski, K. 2002, Fizika B, 10, 357Google Scholar
Konacki, M., Muterspaugh, M. W., Kulkarni, S. R., & Helminiak, K. G. 2009, ApJ, 704, 513CrossRefGoogle Scholar
Konacki, M., Torres, G., Jha, S., & Sasselov, D. D. 2003, Nature, 421, 507CrossRefGoogle Scholar
Mandushev, G., et al. , 2005, ApJ, 621, 1061CrossRefGoogle Scholar
Mayor, M., Queloz, D. 1995, Nature, 378, 355CrossRefGoogle Scholar
Reipurth, B., Lindgren, H., Mayor, M., Mermillod, J.-C., & Cramer, N. 2002, AJ, 124, 2813CrossRefGoogle Scholar
Schaefer, G. H., Simon, M., Prato, L., & Barman, T. 2008, AJ, 135, 1659CrossRefGoogle Scholar
Simkin, S. M. 1974, A&A, 31, 129Google Scholar
Simon, K. P. & Sturm, E. 1994, A&A, 281, 286Google Scholar
Simon, M. & Prato, L. 2004, ApJ. 613, L69CrossRefGoogle Scholar
Tonry, J. & Davis, M. 1979, AJ, 84, 1511CrossRefGoogle Scholar
Torres, G., Claret, A., & Young, P. 2009, ApJ, 700, 1349CrossRefGoogle Scholar
Torres, G., Latham, D. W., & Stefanik, R. P. 2007, ApJ, 662, 602CrossRefGoogle Scholar
Zucker, S. 2003, MNRAS, 342, 1291CrossRefGoogle Scholar
Zucker, S. & Alexander, T. 2007, ApJ, 670, 1326CrossRefGoogle Scholar
Zucker, S. & Mazeh, T. 1994, ApJ, 420, 806CrossRefGoogle Scholar
Zucker, S., Mazeh, T., Santos, N. C., Udry, S., & Mayor, M. 2003, A&A, 404, 775Google Scholar
Zucker, S., Torres, G., & Mazeh, S. 1995, ApJ, 452, 863CrossRefGoogle Scholar