Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T12:49:39.388Z Has data issue: false hasContentIssue false

The Tip of the Red Giant Branch as a Cosmological Tool

Published online by Cambridge University Press:  06 February 2024

Myung Gyoon Lee*
Affiliation:
Seoul National University, Department of Physics and Astronomy, SNUARC, Seoul, Republic of Korea
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The luminosity of the brightest stars (tip) of the red giant branch (TRGB) in the color–magnitude diagrams of old stars was used early on to introduce the ‘multiple stellar populations’ concept, in 1944, by Walter Baade. However, the precision and accuracy of the TRGB for distance estimation has not been known well for long. In the modern era, equipped with high spatial resolution imaging telescopes, the TRGB is considered an excellent standard candle for any type of resolved galaxies, thus representing a powerful probe for cosmology. The TRGB has several advantages over the classical Cepheids. I review how we can apply the TRGB in cosmology. Four science cases, from large to small scales, are presented: (1) the Hubble flow with Type Ia supernovae; (2) Virgo Cluster infall and dark matter; (3) dark galaxies; and (4) dark matter-free galaxies.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Anand, G. S., Tully, R. B., Karachentsev, I. D., Makarov, D. I., Makarova, L., Rizzi, L., Shaya, Edward J. 2018, ApJL, 861, L6. doi: 10.3847/2041-8213/aacc2b Google Scholar
Anand, G. S., et al. 2021, AJ, 162, 80. doi: 10.3847/1538-3881/ac0440 Google Scholar
Anand, G. S., Tully, R. B., Rizzi, L., Riess, A. G.; Yuan, W. 2022, ApJ, 932, 15. doi: 10.3847/1538-4357/ac68df Google Scholar
Baade, W. 1944, ApJ, 100, 137. doi: 10.1086/144650 Google Scholar
Ball, C., et al. 2018, AJ, 155, 65. doi: 10.3847/1538-3881/aaa156 Google Scholar
Beaton, R. L., et al. 2019, Astronomical Distance Determination in the Space Age. Series: Space Sciences Series of ISSI, 89. doi: 10.1007/978-94-024-1631-2_4 Google Scholar
Bellazzini, M. 2008, Mem. Soc. Astron. It., 79, 440. doi: 10.48550/arXiv.0711.2016 Google Scholar
Bressan, A., Marigo, P., Girardi, L., Salasnich, Bernardo; Dal Cero, C;, Rubele, S., Nanni, A. 2012, MNRAS, 427, 127. doi: 10.1111/j.1365-2966.2012.21948.x Google Scholar
Brunker, et al. 2019, AJ, 157, 76. doi: 10.3847/1538-3881/aafb39 Google Scholar
Cannon, J. M., et al. 2015, AJ, 149, 72. doi: 10.1088/0004-6256/149/2/720049/198/1/6 Google Scholar
Danieli, S., van Dokkum, P., Abraham, R., Conroy, C., Dolphin, A. E., Romanowsky, A. J. 2020, ApJL, 895, L4. doi: 10.3847/2041-8213/ab8dc4 Google Scholar
Dixon, M., Mould, J., Flynn, C., et al. 2023, MNRAS, 523, 2283. doi: 10.1093/mnras/stad1500 Google Scholar
Freedman, W. L., Hatt, D., et al. 2019, ApJ, 882, 34. doi: 10.3847/1538-4357/ab2f73 Google Scholar
Freedman, W. L., et al. 2020, ApJ, 891, 57. doi: 10.3847/1538-4357/ab7339 Google Scholar
Freedman, W. L. 2021, ApJ, 919, 16. doi: 10.3847/1538-4357/ac0e95 Google Scholar
Hatt, D., et al. 2017, ApJ, 845, 146. doi: 10.3847/1538-4357/aa7f73 Google Scholar
Hoyt, T. J. 2023, Nat. Astron., 7, 590. doi: 10.1038/s41550-023-01913-1 Google Scholar
Jang, I. S. & Lee, M. G. 2017a, ApJ, 835, 28. doi: 10.3847/1538-4357/835/1/28 CrossRefGoogle Scholar
Jang, I. S. & Lee, M. G. 2017b, ApJ, 836, 74. doi: 10.3847/1538-4357/836/1/74 Google Scholar
Jang, I. S., et al. 2021, ApJ, 906, 125. doi: 10.3847/1538-4357/abc8e9 Google Scholar
Janowiecki, S., et al. 2015, ApJ, 801, 96 Google Scholar
Kang, J., Kim, Y. J., Lee, M. G., Jang, I. S. 2020, ApJ, 897, 106. doi: 10.3847/1538-4357/ab94ba Google Scholar
Karachentsev, I. D., Makarova, L. N., Tully, R. B., Rizzi, L., Shaya, E. J. 2018, ApJ, 858, 62. doi: 10.3847/1538-4357/aabaf1 Google Scholar
Kashibadze, O. G. & Karachentsev, I. D. 2018, A&A, 609, A11. doi: 10.1051/0004-6361/201731645 Google Scholar
Kashibadze, O. G., Karachentsev, I. D., & Karachentseva, V. E. 2020, A&A, 635, A135. doi: 10.1051/0004-6361/201936172 Google Scholar
Kim, Y. J., Kang, J., Lee, M. G., Jang, I. S. 2020, ApJ, 905, 104. doi: 10.3847/1538-4357/abbd97 Google Scholar
Lee, M. G. 1993, ApJ, 408, 409. doi: 10.1086/172598 Google Scholar
Lee, M. G., Freedman, W. L., & Madore, B. F. 1993, ApJ, 417, 553. doi: 10.1086/173334 Google Scholar
Lee, J., Shin, E.-. jin., & Kim, J.-h. 2021, ApJL, 917, L15. doi: 10.3847/2041-8213/ac16e0 Google Scholar
Li, S., Casertano, S., & Riess, A. G. 2022, ApJ, 939, 96. doi: 10.3847/1538-4357/ac7559 Google Scholar
Madore, B. F., Mager, V., & Freedman, W. L. 2009, ApJ, 690, 389. doi: 10.1088/0004-637X/690/1/389 Google Scholar
Madore, B. F., Freedman, W. L., Owens, K. A., Jang, I. S. 2023, AJ, 166, 2. doi: 10.3847/1538-3881/acd3f3 Google Scholar
Makarov, D., Makarova, L., Rizzi, L., Tully, R. Brent; Dolphin, A. E., Sakai, S., Shaya, E. J. 2006, AJ, 132, 2729. doi: 10.1086/508925 Google Scholar
McQuinn, K. B. W., et al. 2014, ApJ, 785, 3. doi: 10.1088/0004-637X/785/1/3 Google Scholar
McQuinn, K. B. W., Skillman, E. D., Dolphin, A. E., Berg, D., Kennicutt, R. 2017, AJ, 154, 51. doi: 10.3847/1538-3881/aa7aad Google Scholar
Méndez, B., Davis, M., Moustakas, J., Newman, J., Madore, B. F., Freedman, W. L. 2002, AJ, 124, 213. doi: 10.1086/341168 Google Scholar
Mould, J. R., Kristian, J., & Da Costa, G. S. 1983, ApJ, 270, 471. doi: 10.1086/161141 Google Scholar
Mould, J., Clementini, G., & Da Costa, G. 2019, PASA, 36, e001. doi: 10.1017/pasa.2018.46 Google Scholar
Peirani, S., & de Freitas Pacheco, J. A. 2006, New Astron., 11, 325 Google Scholar
Peirani, S., & de Freitas Pacheco, J. A. 2008, A&A, 488, 845 Google Scholar
Perivolaropoulos, L. & Skara, F. 2022, New Astron. Rev., 95, 101659. doi: 10.1016/j.newar.2022.101659 Google Scholar
Riess, A. G., Casertano, S., Yuan, W., Bowers, J. B., Macri, L., Zinn, J. C., Scolnic, D. 2021, ApJL, 908, L6. doi: 10.3847/2041-8213/abdbaf Google Scholar
Riess, A. G., et al. 2022, ApJL, 934, L7. doi: 10.3847/2041-8213/ac5c5b Google Scholar
Rizzi, L., Tully, R. B., Makarov, D., Makarova, Lidia; Dolphin, A. E., Sakai, S., Shaya, E. J. 2007, ApJ, 661, 815. doi: 10.1086/516566 Google Scholar
Salaris, M. & Cassisi, S. 1997, MNRAS, 289, 406. doi: 10.1093/mnras/289.2.406 Google Scholar
Serenelli, A., Weiss, A., Cassisi, S., Salaris, M., Pietrinferni, A. 2017, A&A, 606, A33. doi: 10.1051/0004-6361/201731004 Google Scholar
Shen, Z., et al. 2021, ApJL, 914, L12. doi: 10.3847/2041-8213/ac0335 CrossRefGoogle Scholar
Silk, J. 2019, MNRAS, 488, L24. doi: 10.1093/mnrasl/slz090 Google Scholar
Soltis, J., Casertano, S., & Riess, A. G. 2021, ApJL, 908, L5. doi: 10.3847/2041-8213/abdbad Google Scholar
Tammann, G. A., Sandage, A., & Reindl, B. 2008, ApJ, 679, 52. doi: 10.1086/529508 Google Scholar
Tikhonov, N. A. & Galazutdinova, O. A. 2020, Astron. Lett., 45, 750. doi: 10.1134/S1063773719110069 Google Scholar
Trujillo, I., et al. 2019, MNRAS, 486, 1192. doi: 10.1093/mnras/stz771 Google Scholar
Tully, R. B., et al. 2023, ApJ, 944, 94. doi: 10.3847/1538-4357/ac94d8 Google Scholar
van Dokkum, P., et al. 2018, ApJL, 864, L18. doi: 10.3847/2041-8213/aada4d Google Scholar
van Dokkum, P., et al. 2022, Nature, 605, 435. doi: 10.1038/s41586-022-04665-6 Google Scholar