Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T12:39:01.505Z Has data issue: false hasContentIssue false

Time-Domain Astronomy with Swift, Fermi and Lobster

Published online by Cambridge University Press:  20 April 2012

Neil Gehrels
Affiliation:
Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA email: [email protected]
Scott D. Barthelmy
Affiliation:
Astroparticle Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA email: [email protected]
John K. Cannizzo
Affiliation:
Astroparticle Physics Laboratory, CRESST/UMBC/Goddard Space Flight Center, Greenbelt, MD 20771, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The dynamic transient gamma-ray sky is revealing many interesting results, largely due to findings by Fermi and Swift. The list includes new twists on gamma-ray bursts (GRBs), a GeV flare from a symbiotic star, GeV flares from the Crab Nebula, high-energy emission from novae and supernovae, and, within the last year, a new type of object discovered by Swift—a jetted tidal disruption event. In this review we present highlights of these exciting discoveries. A new mission concept called Lobster is also described; it would monitor the X-ray sky at order-of-magnitude higher sensitivity than current missions can.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Abdo, A. A., et al. , 2011, Science, 331, 739CrossRefGoogle Scholar
Angel, J. R. P. 1979, ApJ, 233, 364CrossRefGoogle Scholar
Atwood, W. B., et al. , 2009, ApJ, 697, 1071CrossRefGoogle Scholar
Barthelmy, S. D., et al. , 2005, Space Sci. Rev., 120, 143CrossRefGoogle Scholar
Berger, E., et al. , 2011, GCN Circ., 11854, 1Google Scholar
Bloom, J. S., et al. , 2011, Science, 333, 203CrossRefGoogle Scholar
Burrows, D. N., et al. , 2005, Space Sci. Rev., 120, 165CrossRefGoogle Scholar
Burrows, D. N., et al. , 2011, Nature, 476, 421CrossRefGoogle Scholar
Cannizzo, J. K., Troja, E., & Lodato, G. 2011, ApJ, 742, 32CrossRefGoogle Scholar
Cenko, S. B., et al. , 2011, arXiv, 1107.5307v1CrossRefGoogle Scholar
Fruchter, A. F., et al. , 2011, GCN Circ., 11881, 1Google Scholar
Gallagher, J. S. & Starrfield, S. 1978, ARAA, 16, 171CrossRefGoogle Scholar
Gehrels, N., et al. , 2004, ApJ, 611, 1005CrossRefGoogle Scholar
Gehrels, N., Ramirez-Ruiz, E., & Fox, D. B. 2009, ARAA, 47, 567CrossRefGoogle Scholar
Levan, A. J., et al. , 2011, Science, 333, 199CrossRefGoogle Scholar
Meegan, C., et al. , 2009, ApJ, 702, 791CrossRefGoogle Scholar
Osborne, J. P., et al. , 2011, ApJ, 727, 124CrossRefGoogle Scholar
Roming, P. W. A., et al. , 2005, Space Sci. Rev., 120, 95CrossRefGoogle Scholar
Shao, L., Zhang, F.-W., Fan, Y.-Z., & Wei, D.-M., 2011, ApJ, 734, 33CrossRefGoogle Scholar
Shapiro, S. L. & Teukolsky, S. A. 1983, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (New York: John Wiley & Sons)CrossRefGoogle Scholar
Tavani, M., Bulgarelli, A., & Vittorini, V., et al. , 2011, Science, 331, 736CrossRefGoogle Scholar
Wilson-Hodge, C. A., et al. , 2011, ApJ, 727, 40CrossRefGoogle Scholar