Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T01:46:18.045Z Has data issue: false hasContentIssue false

Tidally-disrupted Molecular Clouds falling to the Galactic Center

Published online by Cambridge University Press:  09 February 2017

Masato Tsuboi
Affiliation:
Institute of Space and Astronautical Science, JAXA, Sagamihara, Kanagawa 252-5210, Japan email: [email protected]
Yoshimi Kitamura
Affiliation:
Institute of Space and Astronautical Science, JAXA, Sagamihara, Kanagawa 252-5210, Japan email: [email protected]
Kenta Uehara
Affiliation:
Department of Astronomy, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
Ryosuke Miyawaki
Affiliation:
College of Arts and Sciences, J.F. Oberlin University, Machida, Tokyo 194-0294, Japan
Atsushi Miyazaki
Affiliation:
Japan Space Forum, Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We found a molecular cloud connecting from the outer region to the “Galactic Center Mini-spiral (GCMS)” which is a bundle of the ionized gas streams adjacent to Sgr A*. The molecular cloud has a filamentary appearance which is prominent in the CS J=2-1 emission line and is continuously connected with the GCMS. The velocity of the molecular cloud is also continuously connected with that of the ionized gas in the GCMS observed in the H42α recombination line. The morphological and kinematic relations suggest that the molecular cloud is falling from the outer region to the vicinity of Sgr A*, being disrupted by the tidal shear of Sgr A* and ionized by UV emission from the Central Cluster. We also found the SiO J=2-1 emission in the boundary area between the filamentary molecular cloud and the GCMS. There seems to exist shocked gas in the boundary area.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Christopher, M. H., Scoville, N. Z., Stolovy, S. R. & Yun, Min S. 2005, ApJ, 622, 346 CrossRefGoogle Scholar
Ekers, R. D., van Gorkom, J. H., Schwarz, U. J., & Goss, W. M. 1983, AAp, 122, 143 Google Scholar
Genzel, R., Thatte, N., Krabbe, A., Kroker, H., & Tacconi-Garman, L. E. 1996, ApJ, 472, 153 Google Scholar
Ghez, A. M., et al. 2008, ApJ, 689, 1044 CrossRefGoogle Scholar
Gillessen, S., Eisenhauer, F., Trippe, S., et al. 2009, ApJ, 692, 1075 CrossRefGoogle Scholar
Güsten, R., Genzel, R., Wright, M. C. H., et al. 1987, ApJ, 318, 124 Google Scholar
Inoue, T. & Fukui, Y. 2013, ApJ, 774, L31 Google Scholar
Jalali, B., Pelupessy, F. I., Eckart, A., et al. 2014, MN, 444. 1205Google Scholar
Lo, K. Y. & Claussen, M. J. 1983, Nature, 306, 647 CrossRefGoogle Scholar
Martín, S., Martín-Pintado, J., Montero-Castaño, M., et al. 2012, AAp 539 id.A29 Google Scholar
McMullin, J. P., Waters, B., Schiebel, D., Young, W., & Golap, K. 2007, Astronomical Data Analysis Software and Systems XVI, ed. Shaw, R. A., Hill, F., & Bell, D. J., 127Google Scholar
Montero-Castaño, M., Herrnstein, R. M. & Ho, P. T. P. 2009, ApJ, 695, 1477 CrossRefGoogle Scholar
Paumard, T., et al. 2006, ApJ, 643, 1011 CrossRefGoogle Scholar
Reid, M. J., Menten, K. M., Genzel, R., Ott, T., Schödel, R., & Eckart, A. 2003, ApJ, 587, 208 Google Scholar
Tsuboi, M., Tadaki, K-I., Miyazaki, A., & Handa, T. 2011, PASJ, 63, 763 CrossRefGoogle Scholar
Tsuboi, M., Miyazaki, A., & Uehara, K. 2015, PASJ 67 id.109 CrossRefGoogle Scholar
Tsuboi, M., Kitamura, Y., Miyoshi, M., et al. 2016a, PASJ 68 id.L7 CrossRefGoogle Scholar
Tsuboi, M., Kitamura, Y., Uehara, K., et al. 2016b, ApJ, submittedGoogle Scholar
Yusef-Zadeh, F., Roberts, D. A., Wardle, M., et al. 2015, ApJ 801 id. L26Google Scholar