Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T03:39:57.228Z Has data issue: false hasContentIssue false

Tidal evolution in multiple planet systems: application to Kepler-62 and Kepler-186

Published online by Cambridge University Press:  05 January 2015

Emeline Bolmont
Affiliation:
Univ. Bordeaux, Laboratoire d'Astrophysique de Bordeaux, UMR 5804, F-33270, Floirac, France CNRS, Laboratoire d'Astrophysique de Bordeaux, UMR 5804, F-33270, Floirac, France
Sean N. Raymond
Affiliation:
Univ. Bordeaux, Laboratoire d'Astrophysique de Bordeaux, UMR 5804, F-33270, Floirac, France CNRS, Laboratoire d'Astrophysique de Bordeaux, UMR 5804, F-33270, Floirac, France
Jérémy Leconte
Affiliation:
Canadian Institute for Theoretical Astrophysics, 60st St George Street, University of Toronto, Toronto, ON, M5S3H8, Canada Banting Fellow Center for Planetary Sciences, Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, ON, M1C 1A4
Alexandre Correia
Affiliation:
Departamento de Fisica, I3N, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal ASD, IMCCE-CNRS UMR8028, Observatoire de Paris, UPMC, 77 Av. Denfert-Rochereau, 75014 Paris, France
Elisa Quintana
Affiliation:
SETI Institute, 189 Bernardo Ave, Suite 100, Mountain View, CA 94043, USA NASA Ames Research Center, Moffett Field, CA 94035
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A large number of observed exoplanets are part of multiple planet systems. Most of these systems are sufficiently close-in to be tidally evolving. In such systems, there is a competition between the excitation caused by planet-planet interactions and tidal damping. Using as an example two multiple planet systems, which host planets in the surface liquid water habitable zone (HZ): Kepler-62 and Kepler-186, we show the importance and effect of both planetary and stellar tides on the dynamical evolution of planets and on the climate of the HZ planets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Berger, A. 1988, Reviews of Geophysics, 26, 624Google Scholar
Bolmont, E., Raymond, S. N., von Paris, P., et al. 2014, ApJ, 793, 3Google Scholar
Bolmont, E., Selsis, F., Raymond, S. N., Leconte, J., Hersant, F., Maurin, A.-S., Pericaud, J. 2013, A&A 556 AA17.Google Scholar
Borucki, W. J., Agol, E., Fressin, F., et al. 2013, Science, 340, 587Google Scholar
Chabrier, G. & Baraffe, I. 2000, ARAA, 38, 337Google Scholar
Chambers, J. E. 1999, MNRAS, 304, 793CrossRefGoogle Scholar
Correia, A. C. M., Udry, S., Mayor, M., et al. 2005, A&A, 440, 751Google Scholar
Correia, A. C. M. & Rodríguez, A. 2013, ApJ, 767, 128Google Scholar
Couetdic, J., Laskar, J., Correia, A. C. M., Mayor, M., & Udry, S. 2010, A&A, 519, A10Google Scholar
Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007, ApJ, 659, 1661Google Scholar
Heller, R., Williams, D., Kipping, D., et al. 2014 Astrobiology 14, 798835CrossRefGoogle Scholar
Hut, P. 1981, A&A, 99, 126Google Scholar
Kidder, L. E. 1995, Phys. Rev. D, 52, 821CrossRefGoogle Scholar
Lambeck, K. 1977, Royal Society of London Philosophical Transactions Series A, 287, 545Google Scholar
Laskar, J. 1990, Icarus, 88, 266Google Scholar
Leconte, J., Chabrier, G., Baraffe, I., & Levrard, B. 2010, A&A 516 A64Google Scholar
Quintana, E. V., Barclay, T., Raymond, S. N., et al. 2014, Science, 344, 277Google Scholar