Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T05:43:19.807Z Has data issue: false hasContentIssue false

Three-dimensional simulations of the expanding remnant of SN 1987A

Published online by Cambridge University Press:  29 January 2014

Toby Potter
Affiliation:
International Centre for Radio Astronomy Research M468, The University of Western Australia 35 Stirling Hwy, Crawley Western Australia, 6009
Lister Staveley-Smith
Affiliation:
International Centre for Radio Astronomy Research M468, The University of Western Australia 35 Stirling Hwy, Crawley Western Australia, 6009
John Kirk
Affiliation:
Max-Planck-Institut für Kernphysik, Heidelberg, Germany
Brian Reville
Affiliation:
Department of Physics, University of Oxford
Geoff Bicknell
Affiliation:
Research School of Astronomy and Astrophysics, Australian National University email: [email protected]
Ralph Sutherland
Affiliation:
Research School of Astronomy and Astrophysics, Australian National University email: [email protected]
Alexander Wagner
Affiliation:
Research School of Astronomy and Astrophysics, Australian National University email: [email protected]
Giovanna Zanardo
Affiliation:
International Centre for Radio Astronomy Research M468, The University of Western Australia 35 Stirling Hwy, Crawley Western Australia, 6009
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

SNR 1987A is the expanding remnant from the brightest supernova since the invention of the telescope. The remnant has been monitored extensively in the radio at variety of wavelengths and provides a wealth of data on which to base a simulation. Questions to be answered include estimating the efficiency of particle acceleration at shock fronts, determining the cause of the one-sided radio morphology for SNR 1987A and investigating the gas properties of the pre-supernova environment. We attempt to address these questions using a fully three-dimensional model of SNR 1987A.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bell, A. R. 2004, MNRAS 353 550558Google Scholar
Dewey, D., Dwarkadas, V. V., Haberl, F., Sturm, R., & Canizares, C. R. 2012, ApJ, 752, 103Google Scholar
Fryxell, B., Olson, K., Ricker, P., Timmes, F. X., Zingale, M., Lamb, D. Q., MacNeice, P., Rosner, R., Truran, J. W., & Tufo, H. 2000, ApJS, 131, 273Google Scholar
Kirk, J. G., Duffy, P., & Gallant, Y. A. 1996, A&A 314 1010–1016Google Scholar
Mattila, S., Lundqvist, P., Groningsson, P., Meikle, P., Stathakis, R., Fransson, C., & Cannon, R. 2010, ApJ 717 1140–1156Google Scholar
Ng, C. Y., Gaensler, B. M., Staveley-Smith, L., Manchester, R. N., Kesteven, M. J., Ball, L., & Tzioumis, A. K. 2008, ApJ 684 481–497Google Scholar
Ng, C. Y., et al. 2013 in-preparationGoogle Scholar
Plait, P. C., Lundqvist, P., Chevalier, R. A., & Kirshner, R. P. 1995, ApJ 439 730–751CrossRefGoogle Scholar
Potter, T. M., Staveley-Smith, L., Ng, C. Y., Ball, L., Gaensler, B. M., Kesteven, M. J., Manchester, R. N., Tzioumis, A. K., & Zanardo, G. 2009, ApJ 705 261–271Google Scholar
Sutherland, R. S. & Bicknell, G. V. 2007, ApJS 173 37–69Google Scholar
Truelove, J. K. & McKee, C. F. 1999, ApJS 120 299–236Google Scholar
Zhekov, S. A., Park, S., McCray, R., Racusin, J. L., & Burrows, D. N. 2010, MNRAS 407 1157–1169Google Scholar