Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T02:53:29.407Z Has data issue: false hasContentIssue false

Thermohaline mixing in stars : solving the long-standing 3He problem

Published online by Cambridge University Press:  23 April 2010

Corinne Charbonnel
Affiliation:
Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland email: [email protected], [email protected] CNRS UMR 5572, Toulouse University, 14, av.E.Belin, 31400 Toulouse, France
Nadège Lagarde
Affiliation:
Geneva Observatory, University of Geneva, Chemin des Maillettes 51, 1290 Versoix, Switzerland email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thermohaline mixing has been recently identified as the dominating process that governs the photospheric composition of low-mass bright giant stars (Charbonnel & Zahn 2007a). Here we present the predictions of stellar models computed with the code STAREVOL that takes into account this mechanism together with rotational mixing and atomic diffusion. We compare our theorical predictions with recent observations and discuss how the corresponding yields for 3He are compatible with the observed behaviour of this light element in our Galaxy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2010

References

Balser, D. A., Bania, T. M., Brockway, C. J., Rood, R. T., & Wilson, T. L., 1994, ApJ, 430, 667CrossRefGoogle Scholar
Balser, D. A., Bania, T. M., Rood, R. T., & Wilson, T. L., 1999, ApJ, 510, 759CrossRefGoogle Scholar
Balser, D. A., Goss, W. M., Bania, T. M., & Rood, R. T., 2006, ApJ, 640, 360CrossRefGoogle Scholar
Bania, T. M., Balser, D. A., Rood, R. T., Wilson, T. L., & Wilson, T.J., 1997, ApJS, 113, 353CrossRefGoogle Scholar
Bania, T. M., Rood, R. T., & Balser, D. A., 2002, Nature, 415, 54CrossRefGoogle Scholar
Charbonnel, C. 1995, ApJ, 453, L41CrossRefGoogle Scholar
Charbonnel, C. 2002, Nature, 415, 27CrossRefGoogle Scholar
Charbonnel, C. & Do Nascimento, J. D. 1998, A&A, 336, 915Google Scholar
Charbonnel, C. & Talon, S. 1999, A&A, 351, 635Google Scholar
Charbonnel, C. & Zahn, J. P. 2007a, A&A Letters, 467, L15Google Scholar
Charbonnel, C. & Zahn, J. P. 2007b, A&A Letters, 476, L29Google Scholar
Coc, A., Vangioni-Flam, E., Descouvemont, P., Adahchour, A., & Angulo, C. 2004, ApJ, 600, 544CrossRefGoogle Scholar
Cyburt, R. H. 2004, Phys. Rev.D, 70, 023 505CrossRefGoogle Scholar
Dearborn, D. S. P., Steigman, G., & Tosi, M., 1996, ApJ, 465, 887CrossRefGoogle Scholar
Decressin, T., Mathis, S., Palacios, A., et al. 2009, A&A, 495, 271Google Scholar
Eggleton, P. P., Dearborn, D. S. P., & Lattanzio, J. C 2006 Science, 314, 5805, 1580CrossRefGoogle Scholar
Galli, D., Stanghellini, L., Tosi, M., & Palla, F. 1997, ApJ, 477, 218CrossRefGoogle Scholar
Geiss, J. & Reeves, H., 1972, A&A 18, 126Google Scholar
Geiss, J., 1993, in Origin and evolution of the elements, eds. Prantzos, N. et al. , p. 89Google Scholar
Gilroy, K. K. & Brown, J. A. 1991, ApJ, 371, 578CrossRefGoogle Scholar
Iben, I., 1967, ApJ, 143, 642Google Scholar
Kawaler, S. D., 1988, ApJ, 333, 236CrossRefGoogle Scholar
Kippenhahn, R., Ruschenplatt, G., & Thomas, H. C. 1980, A&A, 91, 175Google Scholar
Krishnamurti, R. 2003, J. Fluid Mech., 483, 287CrossRefGoogle Scholar
Maeder, A. & Zahn, J. P. 1998, A&A, 334, 1000Google Scholar
Palacios, A., Charbonnel, C., Talon, S., & Forestini, M. 2003, A&A, 399, 603Google Scholar
Palacios, A., Charbonnel, C., Talon, S., & Siess, L. 2006, A&A, 453, 261Google Scholar
Palla, F., Bachiller, R., Stanghellini, L., Tosi, M., Galli, D., 2000, A&A, 355, 69Google Scholar
Paquette, C., Pelletier, C., Fontaine, G., & Michaud, G., 1986, ApJS, 61, 177CrossRefGoogle Scholar
Rood, R. T., 1972, ApJ, 177, 681CrossRefGoogle Scholar
Rood, R. T., Steigman, G., & Tinsley, B. M., 1976, ApJ, 207, L57CrossRefGoogle Scholar
Rood, R. T., Bania, T. W., & Wilson, T. L. 1984, ApJ, 280, 629CrossRefGoogle Scholar
Rood, R. T., Bania, T. W., & Wilson, T. L. 1992, Nature, 355, 618CrossRefGoogle Scholar
Romano, D., Tosi, M., Matteucci, F., & Chiappini, C. 2003, MNRAS, 346, 295CrossRefGoogle Scholar
Smiljanic, R., Gauderon, R., North, P., Barbuy, B., Charbonnel, C., & Mowlavi, N. 2009a, A&A 502, 267Google Scholar
Smiljanic, R., Pasquini, L., Charbonnel, C., & Lagarde, N. 2009b, A&A, in press, astro-ph 0910.4399Google Scholar
Talon, S. & Charbonnel, C 1998, A&A, 335, 959Google Scholar
Talon, S. & Charbonnel, C 2005, A&A, 440, 981Google Scholar
Tosi, M. 1996, ASP Conference Series, Vol. 98, 299Google Scholar
Tosi, M. 1998, Space Science Reviews, Vol. 84, 207CrossRefGoogle Scholar
Tosi, M. 2000, IAUS 198, 525CrossRefGoogle Scholar
Ulrich, R. K. 1972, ApJ, 172, 165CrossRefGoogle Scholar
Weiss, A., Wagenhuber, J., & Denissenkov, P. A., 1996, A&A, 313, 581Google Scholar
Zahn, J. P. 1992, A&A, 265, 115Google Scholar