Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T16:40:07.932Z Has data issue: false hasContentIssue false

Thermally damped linear compressional waves in a 2D solar coronal model

Published online by Cambridge University Press:  01 September 2007

A. Marcu
Affiliation:
Department of Theoretical and Computational Physics, Babes-Bolyai University, 1, M.Kogalniceanu, Cluj-Napoca, Romania
I. Ballai
Affiliation:
SP2RC, Department of Applied Mathematics, University of Sheffield, Sheffield S3 7RH, UK email: [email protected], [email protected]
B. Orza
Affiliation:
Department of Theoretical and Computational Physics, Babes-Bolyai University, 1, M.Kogalniceanu, Cluj-Napoca, Romania
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The high resolution observations (TRACE and SOHO) of waves in coronal structures have revealed a rapid damping of modes, sometimes their damping length being of the same order as their wavelength. The rapid damping of modes in coronal loops permits us to derive values for magnetic field and transport coefficients. In this contribution we study the damping of linear compressional waves considering a two-dimensional propagation in gravitationally stratified plasma in the presence of thermal conduction. By considering this 2D model, we show that the presence of an additional transversal motion has an important effect on the damping of the waves. This theoretical model allows as to conclude that the main effects influencing the damping of the waves are the degree of the transversal structuring and temperature.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Ballai, I., Erdélyi, R., Pintér, B. 2005, Astrophys. J. 633, L145CrossRefGoogle Scholar
Ballai, I., Erdélyi, R. & Hargreaves, J. 2006, Phys. Plasmas, 13, 042108CrossRefGoogle Scholar
Ballai, I. 2007, Sol. Phys., 246, 72CrossRefGoogle Scholar
Banerjee, D., Erdélyi, R., Oliver, R. & O'Shea, E. 2007 Sol. Phys., 246, 3CrossRefGoogle Scholar
Braginskii, S.I. 1965, Rev. Plasma Phys., 1, 205Google Scholar
De Moortel, I., Hood, A.W., Ireland, J. & Walsh, R.W. 2002, Sol. Phys., 209, 89CrossRefGoogle Scholar
De Moortel, I., Hood, A.W. 2003, Astron. Astrophys., 408, 755CrossRefGoogle Scholar
De Moortel, I., Hood, A.W. 2004, A&A, 415, 705Google Scholar
Dymova, M.V. & Ruderman, M.S. 2007, Astron. Astrophys., 463, 759CrossRefGoogle Scholar
Edwin, P. & Roberts, B. 1983, Sol. Phys., 88, 179CrossRefGoogle Scholar
Mendoza-Briceno, C.A., Erdélyi, R. & Sigalotti, L. Di G. 2004, Astrophys. J., 605, 493CrossRefGoogle Scholar
Ruderman, M.S., Oliver, R., Erdélyi, R., Ballester, J.L. & Goossens, M. 2000, Astron. Astrophys., 354, 261Google Scholar
Ruderman, M.S. & Roberts, B. 2002, Astrophys. J., 557, 475CrossRefGoogle Scholar
Verth, G., van Doorsselaere, T., Erdélyi, R. & Goossens, M. 2007, Astron. Astrophys., 475, 341CrossRefGoogle Scholar