Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T04:18:03.989Z Has data issue: false hasContentIssue false

Thermal desorption of formamide and methylamine from graphite and amorphous water ice surfaces

Published online by Cambridge University Press:  12 October 2020

Henda Chaabouni
Affiliation:
LERMA, UMR8112 du CNRS, de l’Observatoire de Paris et de Université de Cergy-Pontoise. University of Cergy-Pontoise, 5 mail Gay Lussac, 95000 Cergy-Pontoise Cedex, France email: [email protected]
Stephan Diana
Affiliation:
LERMA, UMR8112 du CNRS, de l’Observatoire de Paris et de Université de Cergy-Pontoise. University of Cergy-Pontoise, 5 mail Gay Lussac, 95000 Cergy-Pontoise Cedex, France email: [email protected]
Thanh Nguyen
Affiliation:
LERMA, UMR8112 du CNRS, de l’Observatoire de Paris et de Université de Cergy-Pontoise. University of Cergy-Pontoise, 5 mail Gay Lussac, 95000 Cergy-Pontoise Cedex, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thermal desorption experiments of Formamide (NH2CHO) and methylamine (CH3NH2) were performed in LERMA-Cergy laboratory to determine the values of the desorption energies of formamide and methylamine from analogues of interstellar dust grain surfaces, and to understand their interaction with water ice. We found that more than 95 % of solid NH2CHO diffuses through the np-ASW ice surface towards the graphitic substrate, and is released into the gas phase with a desorption energy distribution Edes = (7460 – 9380) K, measured with the best-fit pre-exponential factor A=1018 s-1. Whereas, the desorption energy distribution of methylamine from the np-ASW ice surface (Edes =3850-8420 K) is measured with the best-fit pre-exponential factor A=1012s-1. A fraction of solid methylamine, of about 0.15 monolayer diffuses through the water ice surface towards the HOPG substrate, and desorbs later, with higher binding energies (5050-8420 K), which exceed that of the crystalline water ice (Edes =4930 K), calculated with the same pre-exponential factor A=1012 s-1.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Altwegg, K. et al. 2016, Sci. Adv, 2, 1 CrossRefGoogle Scholar
Bhushan, B., Nayak, A., & Kamaluddin, . 2016, Origins of Life and Evolution of the Biosphere, 46, 203 CrossRefGoogle Scholar
Bisschop, S. E., Jørgensen, J. K., van Dishoeck, E. F., & de Wachter, E. B. M. 2007 A&A, 465, 913 CrossRefGoogle Scholar
Biver, N., Bockelée-Morvan, D., Debout, V., et al. 2014, A&A, 566, L5 Google Scholar
Bockelée-Morvan, D., Lis, D. C., Wink, J. E., et al. 2000, A&A, 353, 1101 Google Scholar
Chaabouni, H., Diana, S., Nguyen, T., & Dulieu, F. 2018, A&A, 612, A47 Google Scholar
Kahane, C., Ceccarelli, C., Faure, A., & Caux, E. 2013, ApJL, 763, L38 CrossRefGoogle Scholar
Saladino, R., Botta, G., Pino, S., & Di Lauro, E. 2012, Chem. Soc.Rev, 41, 5526 CrossRefGoogle Scholar