Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T06:17:00.306Z Has data issue: false hasContentIssue false

Theory of differential rotation and meridional circulation

Published online by Cambridge University Press:  18 July 2013

Leonid L. Kitchatinov*
Affiliation:
Institute for Solar-Terrestrial Physics, Lermontov Str. 126a, PO Box 291, Irkutsk 664033, Russia email: [email protected] Pulkovo Astronomical Observatory, St. Petersburg 196140, Russia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Meridional flow results from slight deviations from the thermal wind balance. The deviations are relatively large in the boundary layers near the top and bottom of the convection zone. Accordingly, the meridional flow attains its largest velocities at the boundaries and decreases inside the convection zone. The thickness of the boundary layers, where meridional flow is concentrated, decreases with rotation rate, so that an advection-dominated regime of dynamos is not probable in rapidly rotating stars. Angular momentum transport by convection and by the meridional flow produce differential rotation. The convective fluxes of angular momentum point radially inward in the case of slow rotation but change their direction to equatorward and parallel to the rotation axis as the rotation rate increases. The differential rotation of main-sequence dwarfs is predicted to vary mildly with rotation rate but increase strongly with stellar surface temperature. The significance of differential rotation for dynamos has the opposite tendency to increase with spectral type.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Barnes, S. A. 2007, ApJ, 669, 1167 CrossRefGoogle Scholar
Barnes, S. A. 2009, in: Mamajek, E. E., Soderblom, D. R. & Wyse, R. F. G. (eds.), The Ages of Stars, Proc. IAU Symposium 258, p.345 Google Scholar
Barnes, J. R., Collier Cameron, A., Donati, J.-F., James, D. J., Marsden, S. C., & Petit, P. 2005, MNRAS, 357, L1 Google Scholar
Brandenburg, A., Tuominen, I., Moss, D., & Rüdiger, G. 1990, Solar Phys., 128, 243 CrossRefGoogle Scholar
Brun, A. S. & Rempel, M. 2009, Space Sci. Revs, 144, 151 Google Scholar
Brun, A. S., Antia, H. M., & Chitre, S. M. 2010, A&A, 510, 33 Google Scholar
Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J. 2008, ApJ, 689, 1354 CrossRefGoogle Scholar
Choudhuri, A. R. 2008, Adv. Sp. Res., 41, 868 Google Scholar
Croll, B., Walker, G. A. H., Kuschnig, R., et al. 2006, ApJ, 648, 607 CrossRefGoogle Scholar
Donati, J.-F. & Collier Cameron, A. 1997, MNRAS, 291, 1 Google Scholar
Donati, J.-F., Forveille, T., Collier Cameron, A., Barnes, J. R., Delfosse, X., Jardine, M. M., & Valenti, J. A. 2006, Science, 311, 633 Google Scholar
Durney, B. R. 1989, ApJ, 338, 509 CrossRefGoogle Scholar
Garaud, P. & Bodenheimer, P. 2010, ApJ, 719, 313 Google Scholar
Gilman, P. A. & Miesch, M. S. 2004, ApJ, 611, 568 CrossRefGoogle Scholar
Gonzáles Hernández, I., Komm, R., Hill, F., & Howe, R. 2006, ApJ, 638, 576 CrossRefGoogle Scholar
Käpylä, P. J. & Brandenburg, A. 2008, A&A, 488, 9 Google Scholar
Käpylä, P. J., Mantere, M. J., Guerrero, G., Brandenburg, A., & Chatterjee, P. 2011, A&A, 531, A162 Google Scholar
Kippenhahn, R. 1963, ApJ, 137, 664 Google Scholar
Kitchatinov, L. L. 2011, ASInC, 2, 71 Google Scholar
Kitchatinov, L. L. & Olemskoy, S. V. 2011, MNRAS, 411, 1059 Google Scholar
Kitchatinov, L. L. & Olemskoy, S. V. 2012, MNRAS, 423, 3344 CrossRefGoogle Scholar
Kitchatinov, L. L. & Rüdiger, G. 1993, A&A, 276, 96 Google Scholar
Kitchatinov, L. L. & Rüdiger, G. 2005, AN, 326, 379 Google Scholar
Kitchatinov, L. L., Pipin, V. V., & Rüdiger, G. 1994, AN, 315, 157 Google Scholar
Korhonen, H. 2012, in: Mandrini, C. H. & Webb, D. F. (eds.), Comparative Magnetic Minima: Characterizing quiet times in the Sun and stars, Proc. IAU Symposium 286, p.268 Google Scholar
Lebedinskii, A. I. 1941, Astron. Zh., 18, 10 Google Scholar
Miesch, M. S. & Hindman, B. W. 2011, ApJ, 743, 79 CrossRefGoogle Scholar
Miesch, M. S. & Toomre, J. 2009, AnRFM, 41, 317 Google Scholar
Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJ, 641, 618 Google Scholar
Nesme-Ribes, E., Ferreira, E. N., & Vince, L. 1993, A&A, 276, 211 Google Scholar
Rast, M. P., Ortiz, A., & Meisner, R. W. 2008, ApJ, 673, 1209 Google Scholar
Ribes, E. 1986, Adv. Sp. Res., 6, 221 CrossRefGoogle Scholar
Rüdiger, G. 1989, Differential Rotation and Stellar Convection. Gordon & Breach, New York Google Scholar
Rüdiger, G., Egorov, P., Kitchatinov, L. L., & Küker, M. 2005, A&A, 431, 345 Google Scholar
Rempel, M. 2005, ApJ, 631, 1286 Google Scholar
Saar, S. H. & Brandenburg, A. 1999, ApJ, 524, 295 CrossRefGoogle Scholar
Schou, J., Antia, H. M., Basu, S., et al. 1998, ApJ, 505, 390 Google Scholar
Ward, F. 1965, ApJ, 141, 534 Google Scholar
Wilson, P. R., Burtonclay, D., & Li, Y. 1997, ApJ, 489, 395 Google Scholar
Zhao, J. & Kosovichev, A. G. 2004, ApJ, 603, 776 CrossRefGoogle Scholar