Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T11:45:38.516Z Has data issue: false hasContentIssue false

Theory of Cluster Formation: Effects of Magnetic Fields

Published online by Cambridge University Press:  27 April 2011

Fumitaka Nakamura
Affiliation:
Division of Theoretical Astrophysics, National Astronomical Observatory of Japan Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan email: [email protected]
Zhi-Yun Li
Affiliation:
Astronomy Department, University of Virginia, P. O. Box 400325, Charlottesville, VA 22904 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stars form predominantly in clusters inside dense clumps of molecular clouds that are both turbulent and magnetized. The typical size and mass of the cluster-forming clumps are ~1 pc and ~102 – 103 M, respectively. Here, we discuss some recent progress on numerical simulations of clustered star formation in such parsec-scale dense clumps with emphasis on the role of magnetic fields. The simulations have shown that magnetic fields tend to slow down global gravitational collapse and thus star formation, especially in the presence of protostellar outflow feedback. Even a relatively weak magnetic field can retard star formation significantly, because the field is amplified by supersonic turbulence to an equipartition strength. However, in such a case, the distorted field component dominates the uniform one. In contrast, if the field is moderately-strong, the uniform component remains dominant. Such a difference in the magnetic structure is observed in simulated polarization maps of dust thermal emission. Recent polarization measurements show that the field lines in nearby cluster-forming clumps are spatially well-ordered, indicative of a rather strong field. In such strongly-magnetized clumps, star formation should proceed relatively slowly; it continues for at least several global free-fall times of the parent dense clump (tff ~ a few × 105 yr).

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Carpenter, J. M. 2000, AJ, 120, 3139CrossRefGoogle Scholar
Carroll, J. J., Frank, A., & Blackman, E. G. 2010, submitted to ApJ (arXiv:1005.1098)Google Scholar
Falgarone, E., Troland, T. H., Crutcher, R. M., & Paubert, G. 2008, A&A, 487, 247Google Scholar
Lada, C. J. & Lada, E. A. 2003, ARA&A, 41, 57Google Scholar
Gutermuth, et al. 2008, ApJ (Letters), 673, L151CrossRefGoogle Scholar
Li, Z.-Y., & Nakamura, F. 2006, ApJ (Letters), 640, L187CrossRefGoogle Scholar
Li, Z.-Y., Wang, P., Abel, T., & Nakamura, F. 2010, ApJ (Letters), 720, L26CrossRefGoogle Scholar
Maruta, et al. 2010, ApJ, 714, 680CrossRefGoogle Scholar
Nakamura, F. & Li, Z.-Y. 2007, ApJ, 662, 395CrossRefGoogle Scholar
Nakamura, F. & Li, Z.-Y. 2008, ApJ, 687, 354CrossRefGoogle Scholar
Padoan, P., et al. 2001, ApJ, 559, 1005CrossRefGoogle Scholar
Price, D. J. & Bate, M. R. 2008, MNRAS, 385, 1820CrossRefGoogle Scholar
Price, D. J. & Bate, M. R. 2009, MNRAS, 398, 33CrossRefGoogle Scholar
Ridge, N. A., Wilson, T. L., Megeath, S. T., Allen, L. E., & Myers, P. C. 2003, AJ, 126, 286CrossRefGoogle Scholar
Saito, H., Saito, M., Yonekura, Y., & Nakamura, F. 2008, ApJS, 178, 302CrossRefGoogle Scholar
Sugitani, et al. 2010, ApJ, 716, 299CrossRefGoogle Scholar
Troland, T. H. & Crutcher, R. M. 2008, ApJ, 680, 457CrossRefGoogle Scholar
Wang, P., Li, Z.-Y., Abel, T., & Nakamura, F. 2010, ApJ, 709, 27CrossRefGoogle Scholar