Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T13:47:36.008Z Has data issue: false hasContentIssue false

Theories of the initial mass function

Published online by Cambridge University Press:  27 April 2011

Patrick Hennebelle
Affiliation:
Laboratoire de radioastronomie, Ecole normale supérieure and Observatoire de Paris, UMR CNRS 8112 24 rue Lhomond, 75231 Paris Cedex 05, France email: [email protected]
Gilles Chabrier
Affiliation:
CRAL, Ecole normale supérieure de Lyon, UMR CNRS 5574, Univesrité de Lyon, 69364 Lyon Cedex 07, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review the various theories which have been proposed along the years to explain the origin of the stellar initial mass function. We pay particular attention to four models, namely the competitive accretion and the theories based respectively on stopped accretion, MHD shocks and turbulent dispersion. In each case, we derive the main assumptions and calculations that support each theory and stress their respective successes and failures or difficulties.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Adams, F. & Fatuzzo, M. 1996, ApJ, 464, 256CrossRefGoogle Scholar
André, Ph., Belloche, A., Motte, F., & Peretto, N., 2007, A&A, 472, 519Google Scholar
André, Ph., Basu, S., & Inutsuka, S-I., 2009, in Structure Formation in Astrophysics, Chabrier, G. Ed., Cambridge University PressGoogle Scholar
André, P., Men'shchikov, A., & Bontemps, S. et al. A&A, in press, arXiv1005.2618Google Scholar
Bastian, N., Covey, K., & Meyer, M., 2010, ARA&A, 48Google Scholar
Basu, S. & Jones, C., 2004, MNRAS, 347, L47CrossRefGoogle Scholar
Bate, M., Bonnell, I., & Bromm, V., 2003, MNRAS, 339, 577CrossRefGoogle Scholar
Bate, M., 2009, MNRAS, 392, 1363CrossRefGoogle Scholar
Bate, M. & Bonnell, I., 2005, MNRAS, 356, 1201CrossRefGoogle Scholar
Bonnell, I., Bate, M., Clarke, C., & Pringle, J., 2001, MNRAS 323, 785CrossRefGoogle Scholar
Chabrier, G., 2003, PASP, 115, 763CrossRefGoogle Scholar
Chabrier, G. & Hennebelle, P., 2010, ApJL in press, arXiv1011.1185Google Scholar
Clark, P., Klessen, R., & Bonell, I., 2007, MNRAS 379, 57CrossRefGoogle Scholar
Elmegreen, B.G., 1997, ApJ 486, 944CrossRefGoogle Scholar
Elmegreen, B., Klessen, R., & Wilson, C., 2008, ApJ, 681, 365CrossRefGoogle Scholar
Federrath, C., Roman-Duval, J., Klessen, R., Schmidt, W. & Mac Low, M.-M., 2010, A&A, 512, 81Google Scholar
Heithausen, A., Bensch, F., Stutzki, J., Falgarone, F., & Panis, J.-F., 1998, A&A, 331, L65Google Scholar
Hennebelle, P. & Teyssier, R., 2008, A&A, 477, 25Google Scholar
Hennebelle, P., Banerjee, R., Vázquez-Semadeni, E., Klessen, R. & Audit, E., 2008, A&A, 446, 43Google Scholar
Hennebelle, P. & Chabrier, G., 2008, ApJ, 684, 395 (HC08)CrossRefGoogle Scholar
Hennebelle, P. & Chabrier, G., 2009, ApJ, 702, 1428 (HC09)CrossRefGoogle Scholar
Jappsen, A., Klessen, R., Larson, R., Li, Y. & Mac Low, M.-M., 2005, A&A, 435, 611Google Scholar
Kritsuk, A. G., Norman, M. L., Padoan, P., & Wagner, R. 2007, ApJ, 665, 416CrossRefGoogle Scholar
Kroupa, P., 2002, Sci. 295, 82CrossRefGoogle Scholar
Kunz, M. & Mouschovias, T., 2009, MNRAS 399L, 94CrossRefGoogle Scholar
Larson, R., 1973, MNRAS, 161, 133CrossRefGoogle Scholar
Larson, R., 1981, MNRAS, 194, 809CrossRefGoogle Scholar
Machida, M., Matsumoto, T., Hanawa, T., & Tomisaka, K., 2005, MNRAS, 362, 382CrossRefGoogle Scholar
McKee, C.F. & Ostriker, J.P., 2007, ApJ 218, 448Google Scholar
McKee, C.F. & Tan, T., 2003, ApJ 585, 850CrossRefGoogle Scholar
MacLow, M.-M. & Klessen, R., 2004, Rev. Mod. Phys., 76, 125CrossRefGoogle Scholar
Myers, P.C., 2009, ApJ, 706, 1341CrossRefGoogle Scholar
Offner, S., Klein, R., McKee, C., & Krumholz, M., 2009, ApJ, 703, 131CrossRefGoogle Scholar
Padoan, P., Nordlund, A., & Jones, B., 1997, MNRAS, 288, 145CrossRefGoogle Scholar
Padoan, P. & Nordlund, , 1999, ApJ, 526, 279CrossRefGoogle Scholar
Padoan, P. & Nordlund, , 2002, ApJ, 576, 870CrossRefGoogle Scholar
Press, W. & Schechter, P., 1974, ApJ, 187, 425CrossRefGoogle Scholar
Price, N. & Podsiadlowski, P., 1995, MNRAS, 275, 1041CrossRefGoogle Scholar
Salpeter, E., 1955, ApJ, 121, 161CrossRefGoogle Scholar
Scalo, J., 1986, FCPh, 11, 1Google Scholar
Silk, J., 1995, ApJ, 438, L41CrossRefGoogle Scholar
Shu, F., 1977, ApJ, 214, 488CrossRefGoogle Scholar
Schmidt, W., Federrath, C., Hupp, M., Kern, S., & Niemeyer, J., 2009, A&A, 494, 127Google Scholar
Schmidt, W., Kern, S., Federrath, C., & Klessen, R., 2010, A&A, 516, 25Google Scholar
Smith, R., Clark, P., & Bonnell, I., 2008, MNRAS, 391, 1091CrossRefGoogle Scholar
Troland, T. & Heiles, C., 1986, ApJ, 301, 339CrossRefGoogle Scholar
Vázquez-Semadeni, E., 1994, ApJ, 423, 681CrossRefGoogle Scholar
Zinnecker, H., 1982, in Glassgold, A. E. et al. , eds, Symposium on the Orion Nebula to Honour Henry Draper. New York Academy of Sciences, New York, p. 226Google Scholar
Zinnecker, H., 1984, MNRAS, 210, 43CrossRefGoogle Scholar