Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T11:00:26.043Z Has data issue: false hasContentIssue false

Theories of convection and the spectrum of turbulence in the solar photosphere

Published online by Cambridge University Press:  01 August 2006

François Rincon*
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge Centre for Mathematical Sciences, Wilberforce Road Cambridge CB3 0WA, United Kingdom email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Classical theories of turbulence do not describe accurately inertial range scaling laws in turbulent convection and notably fail to model the shape of the turbulent spectrum of solar photospheric convection. To understand these discrepancies, a detailed study of scale-by-scale budgets in turbulent Rayleigh-Bénard convection is presented, with particular emphasis placed on anisotropy and inhomogeneity. A generalized Kolmogorov equation applying to convection is derived and its various terms are computed using numerical simulations of turbulent Boussinesq convection. The analysis of the isotropic part of the equation shows that the third-order velocity structure function is significantly affected by buoyancy forcing and large-scale inhomogeneities. Anisotropic contributions to this equation are also shown to be comparable to their isotropic counterpart at moderate to large scales. Implications of these results for convection in the solar photosphere, mesogranulation and supergranulation are discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Benzi, R., Toschi, F. & Tripiccione, R. 1998, J. Stat. Phys. 93CrossRefGoogle Scholar
Biferale, L., Calzavarini, E., Toschi, F. & Tripiccione, R. 2003, Europhys. Lett. 64, 461467CrossRefGoogle Scholar
Biferale, L. & Procaccia, I. 2005, Phys. Reports 414 (2), 43CrossRefGoogle Scholar
Bolgiano, R. 1959, J. Geophys. Res. 64, 2226CrossRefGoogle Scholar
Calzavarini, E., Toschi, F. & Tripiccione, R. 2002, Phys. Rev. E 66, 016304Google Scholar
Calzavarini, E., Lohse, D., Toschi, F. & Tripiccione, R. 2005, Phys. Fluids 17 (5), 055107CrossRefGoogle Scholar
Chillá, F., Ciliberto, S., Innocenti, C. & Pampaloni, E. 1993, Nuovo Cimento 15D (9), 1229CrossRefGoogle Scholar
Danaila, L., Anselmet, F., Zhou, T. & Antonia, R. A. 2001, J. Fluid Mech. 430, 87109CrossRefGoogle Scholar
Espagnet, O., Muller, R., Roudier, T. & Mein, N 1993, Astron. & Astrophys. 271, 589Google Scholar
Grossmann, S. & Lohse, D. 2000, J. Fluid Mech. 407, 27CrossRefGoogle Scholar
Hathaway, D. H., Beck, J. G., Bogart, R. S. et al. 2000, Solar Phys. 193, 299312CrossRefGoogle Scholar
Hill, R. J. 1997, J. Fluid Mech. 353, 6781CrossRefGoogle Scholar
Kolmogorov, A. N. 1941, Dokl. Akad. Nauk. SSSR 32, 16Google Scholar
L'vov, V. S. 1991, Phys. Rev. Lett. 67, 687690CrossRefGoogle Scholar
Monin, A. S. & Yaglom, A. M. 1975, Statistical fluid mechanics, MIT Press.Google Scholar
Obukhov, A. M. 1959 Dokl. Akad. Nauk. SSR 125, 1246Google Scholar
Petrovay, K. 2001, Space Science Reviews 95, 924CrossRefGoogle Scholar
Rincon, F., Ligniéres, F. & Rieutord, M. 2005, Astron. & Astrophys. 430, L57L60CrossRefGoogle Scholar
Rincon, F. 2006, J. Fluid Mech. 563, 4369CrossRefGoogle Scholar
Verzicco, R. & Camussi, R. 2003, J. Fluid Mech. 477, 1949CrossRefGoogle Scholar
Yakhot, V. 1992, Phys. Rev. Lett. 69, 769CrossRefGoogle Scholar
Zahn, J.-P. 1987, LNP Vol. 292: Solar and Stellar Physics 292, 55Google Scholar