Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T09:40:40.406Z Has data issue: false hasContentIssue false

Theoretical considerations for star formation at low and high redshift

Published online by Cambridge University Press:  12 September 2016

Bruce G. Elmegreen*
Affiliation:
IBM T.J. Watson Research Center1101 Kitchawan Road, Yorktown Heights, NY, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Star formation processes in strongly self-gravitating cloud cores should be similar at all redshifts, forming single or multiple stars with a range of masses determined by local magneto-hydrodynamics and gravity. The formation processes for these cores, however, as well as their structures, temperatures, Mach numbers, etc., and the boundedness and mass distribution functions of the resulting stars, should depend on environment, as should the characteristic mass, density, and column density at which cloud self-gravity dominates other forces. Because the environments for high and low redshift star formation differ significantly, we expect the resulting gas to stellar conversion details to differ also. At high redshift, the universe is denser and more gas-rich, so the active parts of galaxies are denser and more gas rich too, leading to slightly shorter gas consumption timescales, higher cloud pressures, and denser, more massive, bound stellar clusters at the high mass end. With shorter consumption times corresponding to higher relative cosmic accretion rates, and with the resulting higher star formation rates and their higher feedback powers, the ISM has greater turbulent speeds relative to the rotation speeds, thicker gas disks, and larger cloud and star complex sizes at the characteristic Jeans length. The result is a more chaotic appearance at high redshift, bridging the morphology gap between today's quiescent spirals and today's major-mergers, with neither spiral nor major-merger processes actually in play at that time. The result is also a thick disk at early times, and after in-plane accretion from relatively large clump torques, a classical bulge. Today's disks are thinner, and torque-driven accretion is slower outside of inner barred regions. This paper reviews the basic processes involved with star formation in order to illustrate its evolution over time and environment.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Abramson, L. E., Kelson, D. D., Dressler, A., et al. 2014, ApJ, 785, L36 CrossRefGoogle Scholar
Adamo, A., Kruijssen, J. M. D., Bastian, N., Silva-Villa, E., & Ryon, J. 2015, MNRAS, 452, 246 Google Scholar
Bekki, K. 2008, MNRAS, 388, L10 Google Scholar
Béthermin, M., Daddi, E., Magdis, G., et al. 2015, A&A, 573A, 113 Google Scholar
Bolatto, A. D., Wolfire, M., & Leroy, A. K. 2013, ARA&A, 51, 207 Google Scholar
Casado, J., Ascasibar, Y., Gavilán, M., et al. 2015, MNRAS, 451, 888 CrossRefGoogle Scholar
Daddi, E., Elbaz, D., Walter, F., et al. 2010, ApJ, 714, L118 CrossRefGoogle Scholar
Dekel, A., Zolotov, A., Tweed, D., Cacciato, M., Ceverino, D., & Primack, J. R. 2013, MNRAS, 435, 999 Google Scholar
DErcole, A., DAntona, F., Carini, R., Vesperini, E., & Ventura, P. 2012, MNRAS, 423, 1521 Google Scholar
Duncan, K., Conselice, C. J., Mortlock, A., et al. 2014, MNRAS, 444, 2960 CrossRefGoogle Scholar
Elmegreen, B. G. 2011, ApJ, 737, 10 Google Scholar
Elmegreen, B. G., Malhotra, S., & Rhoads, J. 2012, ApJ, 757, 9 Google Scholar
Elmegreen, B. G., Rubio, M., Hunter, D. A., Verdugo, C., Brinks, E., & Schruba, A. 2013, Nature, 495, 487 Google Scholar
Elmegreen, B. G. & Hunter, D. A. 2015, ApJ, 805, 145 Google Scholar
Federrath, C. & Klessen, R. S. 2012, ApJ, 761, 156 Google Scholar
Förster Schreiber, N. M., Genzel, R., Bouché, N., et al. 2009, ApJ, 706, 1364 Google Scholar
Genzel, R., Tacconi, L. J., Gracia-Carpio, J., et al. 2010, MNRAS, 407, 2091 Google Scholar
Genzel, R., Tacconi, L. J., Lutz, D., et al. 2015, ApJ, 800, 20 Google Scholar
Gieles, M., Larsen, S. S., Bastian, N., & Stein, I. T. 2006, A&A, 450, 129 Google Scholar
Glover, S. C. O. & Clark, P. C. 2012, MNRAS, 421, 9 Google Scholar
Kruijssen, J. M. D. 2012, MNRAS, 426, 3008 CrossRefGoogle Scholar
Kruijssen, J. M. D. 2015, MNRAS, 454, 1658 Google Scholar
Krumholz, M. R., Leroy, A. K., & McKee, C. F. 2011, ApJ, 731, 25 Google Scholar
Genzel, R., Förster Schreiber, N. M., Lang, P., et al. 2014, ApJ, 785, 75 Google Scholar
Grazian, A., Fontana, A., Santini, P., et al. 2015, A&A, 575, A96 Google Scholar
Guo, K., Zheng, X. Z., Wang, T., & Fu, H. 2015, ApJ, 808, L49 Google Scholar
Jordán, A., McLaughlin, D. E., Côté, P. et al. 2007, ApJS, 171, 101 CrossRefGoogle Scholar
Kassin, S. A., Weiner, B. J., Faber, S. M., et al. 2012, ApJ, 758, 106 Google Scholar
Krumholz, M. R., Dekel, A., & McKee, C. F. 2012, ApJ, 745, 69 Google Scholar
Larsen, S. S. 2009, A&A, 494, 539 Google Scholar
Larsen, S. S., Strader, J., & Brodie, J. P. 2012, A&A, 544, 14 Google Scholar
Leroy, A. K., Bolatto, A., Gordon, K., et al. 2011, ApJ, 737, 12 Google Scholar
Lombardi, M., Alves, J., & Lada, C. J. 2015, A&A, 576, L1 Google Scholar
Magdis, G. E., Daddi, E., Béthermin, M., et al. 2012, ApJ, 760, 6 Google Scholar
Martig, M., Bournaud, F., Teyssier, R., & Dekel, A. 2009, ApJ, 707, 250 Google Scholar
McLaughlin, D. E. & Fall, S. M. 2008, ApJ, 679, 1272 CrossRefGoogle Scholar
Newman, S. F., Genzel, R., Förster-Schreiber, N. M., et al. 2012, ApJ, 761, 43 Google Scholar
Romeo, A. B. & Wiegert, J. 2011, MNRAS, 416, 1191 Google Scholar
Rubio, M., Elmegreen, B. G., Hunter, D. A., Brinks, E., Cortés, J. R., & Cigan, P. 2015, Nature, 525, 218 Google Scholar
Saintonge, A., Tacconi, L. J., Fabello, S., et al. 2012, ApJ, 758, 73 Google Scholar
Salmi, F., Daddi, E., Elbaz, D., et al. 2012, ApJ, 754, L14 Google Scholar
Silverman, J. D., Daddi, E., Rodighiero, G., et al. 2015, arXiv150504977Google Scholar
Sargent, M. T., Daddi, E., Béthermin, M., et al. 2014, ApJ, 793, 19 Google Scholar
Searle, L., Zinn, R. 1978, ApJ, 225, 357 Google Scholar
Song, M., Finkelstein, S. L., Ashby, M. L. N., et al. 2015, arXiv150705636Google Scholar
Tacconi, L. J., Neri, R., & Genzel, R. 2013, ApJ, 768, 74 Google Scholar
Tan, Q., Daddi, E., Sargent, M., et al. 2013, ApJ, 776, L24 Google Scholar
Teyssier, R., Chapon, D., Bournaud, F., et al. 2010, ApJ, 720, L149 Google Scholar
Whitaker, K. E., van Dokkum, P. G., Brammer, G., & Franx, M. 2012, ApJ 754, L.29 Google Scholar
Zahid, H. J., Dima, G. I., Kudritzki, R.-P., et al. 2014, ApJ, 791, 130 Google Scholar
Zaritsky, D., McCabe, K., Aravena, M., et al. 2015, ApJ, submittedGoogle Scholar