Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T03:52:22.098Z Has data issue: false hasContentIssue false

Testing the robustness of black hole mass measurements with ALMA and MUSE

Published online by Cambridge University Press:  14 May 2020

Sabine Thater
Affiliation:
Leibniz-Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany email: [email protected]
Davor Krajnović
Affiliation:
Leibniz-Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany email: [email protected]
Dieu D. Nguyen
Affiliation:
National Astronomical Observatory of Japan, 2 Chome-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan
Satoru Iguchi
Affiliation:
National Astronomical Observatory of Japan, 2 Chome-21-1 Osawa, Mitaka, Tokyo 181-0015, Japan
Peter M. Weilbacher
Affiliation:
Leibniz-Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present our ongoing work of using two independent tracers to estimate the supermassive black hole mass in the nearby early-type galaxy NGC 6958; namely integrated stellar and molecular gas kinematics. We used data from the Atacama Large Millimeter/submillimeter Array (ALMA), and the adaptive-optics assisted Multi-Unit Spectroscopic Explorer (MUSE) and constructed state-of-the-art dynamical models. The different methods provide black hole masses of (2.89±2.05)×108M from stellar kinematics and (1.35±0.09)×108M from molecular gas kinematics which are consistent within their 3σ uncertainties. Compared to recent MBH - σe scaling relations, we derive a slightly over-massive black hole. Our results also confirm previous findings that gas-based methods tend to provide lower black hole masses than stellar-based methods. More black hole mass measurements and an extensive analysis of the method-dependent systematics are needed in the future to understand this noticeable discrepancy.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Barth, A. J., Darling, J., Baker, A. J., Boizelle, B. D., Buote, D. A., Ho, L. C., & Walsh, J. L. 2016, ApJ, 823, 5110.3847/0004-637X/823/1/51CrossRefGoogle Scholar
Cappellari, M. & Emsellem, E. 2004, PASP, 116, 13810.1086/381875CrossRefGoogle Scholar
Davis, T. A., Bureau, M., Cappellari, M., Sarzi, M., & Blitz, L. 2013, Nature, 494, 32810.1038/nature11819CrossRefGoogle Scholar
Falcón-Barroso, J., Sánchez-Blázquez, P., Vazdekis, A., Ricciardelli, E., Cardiel, N., Cenarro, A. J., Gorgas, J., & Peletier, R. F. 2011, A&A, 532, A95Google Scholar
Gebhardt, K., Adams, J., Richstone, D., Lauer, T. R., Faber, S. M., Gültekin, K., Murphy, J., & Tremaine, S. 2011, ApJ, 729, 11910.1088/0004-637X/729/2/119CrossRefGoogle Scholar
Jeter, B., Broderick, A. E., & McNamara, B. R. 2019, ApJ, 882, 8210.3847/1538-4357/ab3221CrossRefGoogle Scholar
Kormendy, J. & Ho, L.C. 2013, Annu. Rev. Astro. Astrophys., 51, 51110.1146/annurev-astro-082708-101811CrossRefGoogle Scholar
Krajnović, D., Cappellari, M., McDermid, R. M., Thater, S., Nyland, K., de Zeeuw, P. T., Falcón-Barroso, J., Khochfar, S., Kuntschner, H., Sarzi, M., & Young, L. M. 2018, MNRAS, 477, 303010.1093/mnras/sty778CrossRefGoogle Scholar
Madore, B. F., Freedman, W. L., & Bothun, G. D. 2004, ApJ, 607, 81010.1086/383486CrossRefGoogle Scholar
Noel-Storr, J., Baum, S. A., & O’Dea, C. P. 2003, ApJS, 148, 41910.1086/377251CrossRefGoogle Scholar
Noel-Storr, J., Baum, S. A., & O’Dea, C. P. 2007, ApJ, 663, 7110.1086/518359CrossRefGoogle Scholar
Onishi, K., Iguchi, S., Davis, T. A., Bureau, M., Cappellari, M., Sarzi, M., & Blitz, L. 2017, MNRAS, 468, 466310.1093/mnras/stx631CrossRefGoogle Scholar
Saglia, R. P., Opitsch, M., Erwin, P., Thomas, J., Beifiori, A., Fabricius, M., Mazzalay, X., Nowak, N., Rusli, S. P., & Bender, R. 2016, ApJ, 818, 4710.3847/0004-637X/818/1/47CrossRefGoogle Scholar
Sánchez-Blázquez, P., Peletier, R. F., Jiménez-Vicente, J., Cardiel, N., Cenarro, A. J., Falcón-Barroso, J., Gorgas, J., Selam, S., & Vazdekis, A. 2006, MNRAS, 371, 70310.1111/j.1365-2966.2006.10699.xCrossRefGoogle Scholar
Schwarzschild, M. 1979, ApJ, 232, 23610.1086/157282CrossRefGoogle Scholar
Thater, S., Krajnovic, D., Cappellari, M., Davis, T. A., de Zeeuw, P. T., McDermid, R. M., & Sarzi, M. 2019, A&A, 625, A62Google Scholar
van den Bosch, R.C.E 2016, ApJ, 831, 13410.3847/0004-637X/831/2/134CrossRefGoogle Scholar
Verdoes Kleijn, G.A., van der Marel, R.P., de Zeeuw, P.T., Noel-Storr, J., & Baum, S.A. 2002, AJ, 124, 252410.1086/344073CrossRefGoogle Scholar
Verdoes Kleijn, G. A., van der Marel, R. P., & Noel-Storr, J. 2006, AJ, 131, 196110.1086/500973CrossRefGoogle Scholar
Walsh, J. L., Barth, A. J., Ho, L. C., & Sarzi, M. 2013, ApJ, 770, 8610.1088/0004-637X/770/2/86CrossRefGoogle Scholar