Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T21:18:37.607Z Has data issue: false hasContentIssue false

Testing the quenching subgrid physics in Green Valley galaxies

Published online by Cambridge University Press:  09 June 2023

Ignacio Ferreras
Affiliation:
Instituto de Astrofísica de Canarias, C/ Vía Láctea s/n, E38205, La Laguna, Tenerife, Spain Dept. of Physics and Astronomy, University College London, London WC1E 6BT, UK
James Angthopo
Affiliation:
MSSL, University College London, Holmbury St Mary, Surrey, RH5 6NT, UK INAF, Osservatorio Astronomico di Brera, Via Brera 28, 20121, Milano, Italy
Andrea Negri
Affiliation:
Instituto de Astrofísica de Canarias, C/ Vía Láctea s/n, E38205, La Laguna, Tenerife, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the title of this Symposium: “The rise and fall of star formation in galaxies”, the “falling” stage is mostly represented by so-called Green Valley galaxies. In this phase, quenching mechanisms operate, concerning the evolution from star formation towards quiescence. Therefore, GV galaxies are ideal laboratories to test cosmological simulations. This contribution focuses on the application of a novel, dust-independent, definition of the GV, to two of the most recent simulations: EAGLE and Illustris-TNG. We present some of the results, concerning the excess fraction of quenched galaxies in simulations, with respect to observational data from SDSS. We suggest possible causes for the mismatch.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Angthopo, J., Ferreras, I., Silk, J., 2019, MNRAS Lett., 488, L99 10.1093/mnrasl/slz106CrossRefGoogle Scholar
Angthopo, J., Ferreras, I., Silk, J., 2020, MNRAS, 495, 2720 10.1093/mnras/staa1276CrossRefGoogle Scholar
Angthopo, J., Negri, A., Ferreras, I., de la Rosa, I. G., Dalla Vecchia, C., Pillepich, A., 2021, MNRAS, 502, 3685 10.1093/mnras/staa3294CrossRefGoogle Scholar
Baldry, I. K., Glazebrook, K., Brinkmann, J., Ivezić, Ž. , Lupton, R. H., Nichol, R. C., Szalay, A. S., 2004, ApJ, 600, 68110.1086/380092CrossRefGoogle Scholar
Crain, R. A. et al., 2015, MNRAS, 450, 1937 10.1093/mnras/stv725CrossRefGoogle Scholar
Davies, J. J., Crain, R. A., Oppenheimer, B. D., Schaye, J., 2020, MNRAS, 491, 4462 10.1093/mnras/stz3201CrossRefGoogle Scholar
Donnari, M., Pillepich, A., Nelson, D., Marinacci, F., Vogelsberger, M., Hernquist, L., 2021, MNRAS, 506, 4760 10.1093/mnras/stab1950CrossRefGoogle Scholar
Negri, A., Dalla Vecchia, C., Aguerri, J. A. L., Bahé, Y., 2022, MNRAS, 515, 2121 10.1093/mnras/stac1481CrossRefGoogle Scholar
Nelson, D., Springel, V., Pillepich, A., Rodriguez-Gomez, V., Torrey, P., Genel, S., Vogelsberger, M., et al., 2019, Comp. Astronomy & Cosmology, 6, 2 Google Scholar
Salim, S., 2014, Serb. Astron. J., 189, 1 10.2298/SAJ1489001SCrossRefGoogle Scholar
Schaye, J., Crain, R. A., Bower, R. G., Furlong, M., Schaller, M., Theuns, T., Dalla Vecchia, C., et al., 2015, MNRAS, 446, 521 10.1093/mnras/stu2058CrossRefGoogle Scholar
Strateva, I., Ivezić, Ž., Knapp, G. R., Narayanan, V. K., Strauss, M. A., Gunn, J. E., Lupton, R. H., et al., 2001, AJ, 122, 186110.1086/323301CrossRefGoogle Scholar
Terrazas, B. A. et al., 2020, MNRAS, 493, 1888 10.1093/mnras/staa374CrossRefGoogle Scholar
Vazdekis, A., Koleva, M., Ricciardelli, E., Rc̈k, B., Falcón-Barroso, J., 2016, MNRAS, 463, 340910.1093/mnras/stw2231CrossRefGoogle Scholar
Weinberger, R., Springel, V., Hernquist, L., Pillepich, A., Marinacci, F., Pakmor, R., Nelson, D., et al., 2017, MNRAS, 465, 3291 10.1093/mnras/stw2944CrossRefGoogle Scholar