Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T13:43:44.206Z Has data issue: false hasContentIssue false

Temporal Variation of Solar Equatorial Rossby Modes with Azimuthal Orders 6 ≤ m ≤ 10

Published online by Cambridge University Press:  23 December 2024

B. Lekshmi*
Affiliation:
Max–Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany
Laurent Gizon
Affiliation:
Max–Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany Institut für Astrophysik, Georg–August-Universität Göttingen, 37077 Göttingen, Germany
Kiran Jain
Affiliation:
National Solar Observatory, Boulder, CO 80303, USA
Zhi–Chao Liang
Affiliation:
Max–Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany
Jordan Philidet
Affiliation:
Max–Planck-Institut für Sonnensystemforschung, 37077 Göttingen, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use nearly two decades of helioseismic data obtained from the GONG (2002–2020) and HMI (2010–2020) ring-diagram pipelines to examine the temporal variations of the properties of individual equatorial Rossby modes with azimuthal orders in the range 6 ≤ m ≤ 10. We find that the mode parameters obtained from GONG and HMI are consistent during the data overlapping period of 2010–2020. The power and the frequency of each mode exhibit significant temporal variations over the full observing period. Using the GONG data during solar cycles 23 and 24, we find that the mode power averaged over 6 ≤ m ≤ 10 shows a positive correlation with the sunspot number (0.42), while the averaged frequency shift is anti-correlated (–0.91). The anti-correlation between the average mode power and frequency shift is –0.44.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Löptien, Björn & Gizon, Laurent & Birch, Aaron C. & Schou, Jesper & Proxauf, Bastian and Duvall, Thomas L. & Bogart, Richard S. & Christensen, Ulrich R., 2018, Nature Astronomy, 2, 568573 CrossRefGoogle Scholar
Liang, Z.-C., Gizon, L., Birch, A. C., & Duvall, T. L. 2019, Time-distance helioseismology of solar Rossby waves Astron. Astrophys., 626, A3.CrossRefGoogle Scholar
Gizon, L., Cameron, R. H., Bekki, Y., Birch, A. C., Bogart, R. S., Brun, A. S., Damiani, C., Fournier, D., Hyest, L., Jain, K., Lekshmi, B., Liang, Z.-C., & Proxauf, B. 2021, Solar inertial modes: Observations, identification, and diagnostic promise. Astron. Astrophys., 652, L6.CrossRefGoogle Scholar
Hanson, C. S., Gizon, L., & Liang, Z.-C. 2020, Solar Rossby waves observed in GONG++ ring-diagram flow maps. Astron. Astrophys., 635, A109.CrossRefGoogle Scholar
Waidele, M. & Zhao, J. 2023, Observed power and frequency variations of solar rossby waves with solar cycles, Astrophys. J., 954, L26.CrossRefGoogle Scholar
Corbard, T., Toner, C., Hill, F., Hanna, K. D., Haber, D. A., Hindman, B. W., & Bogart, R. S. Ring-diagram analysis with GONG++. In Sawaya–Lacoste, H., editor, GONG+ 2002. Local and Global Helioseismology: the Present and Future 2003, Vol. 517, ESA Special Publication, pp. 255258.Google Scholar
Bogart, R. S., Baldner, C., Basu, S., Haber, D. A., & Rabello–Soares, M. C. 2011, HMI ring diagram analysis I. The processing pipeline. J. Phys. Conf. Series, 271, 012008.CrossRefGoogle Scholar
Proxauf, B., Gizon, L., Löptien, B., Schou, J., Birch, A. C., & Bogart, R. S. 2020, Exploring the latitude and depth dependence of solar Rossby waves using ring-diagram analysis, Astron. Astrophys., 634, A44.CrossRefGoogle Scholar
SILSO, World Data Center - Sunspot Number and Long-term Solar Observations, Royal Observatory of Belgium, on-line Sunspot Number catalogue: http://www.sidc.be/SILSO/, 2002–2020Google Scholar
Goddard, C. R. and Birch, A. C. and Fournier, D. and Gizon, L. 2020, Predicting frequency changes of global-scale solar Rossby modes due to solar cycle changes in internal rotation, Astron. Astrophys., 640, L10.CrossRefGoogle Scholar