Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T04:10:33.789Z Has data issue: false hasContentIssue false

Temporal evolution of the velocity distribution in systems described by the Vlasov equation; Radiation Belts: Analytical and computational results

Published online by Cambridge University Press:  24 September 2020

Abiam Tamburrini C
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago. emails: [email protected], [email protected], [email protected]
Iván Gallo-Méndez
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago. emails: [email protected], [email protected], [email protected]
Sergio Davis
Affiliation:
Comisión Chilena de Energía Nuclear, Casilla 188-D, Santiago. email: [email protected] Departamento de Física, Facultad de Ciencias Exactas, Universidad Andres Bello.
Pablo S. Moya
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago. emails: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An interesting problem in plasma physics, when approached from the point of view of Statistical Mechanics is to obtain properties of collisionless plasmas, which are described by the Vlasov equation. Through what we call the Ehrenfest procedure, which uses statistical mechanical relations we obtain expectation value relations for arbitrary observables, which allows us to study the dynamics of the Earth's Outer Radiation Belt. Focusing on the velocity fluctuations, the width of the distribution function and the pitch angle, a computer simulation was performed to describe the system in order to compare and test the Ehrenfest approach. Our results show that the change in the average width of the distribution follows the analytical relation. However, for the velocity fluctuation results are not conclusive yet and require more exploration. It remains as future work to verify the relation for the pitch angle.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bellan, P. Fundamentals of Plasma Physics, Cambridge University Press, 2006CrossRefGoogle Scholar
Davis, S. & D., González 2015, J. Phys. A: Math. Theor., 48, 425003CrossRefGoogle Scholar
Davis, S. & G., Gutiérrez 2012, Phys. Rev., 86, 051136CrossRefGoogle Scholar
González, D., A., Tamburrini, S., Davis, & J., Jain 2018, Journal of Physics: Conference Series, 1043, 012008CrossRefGoogle Scholar
Hong, Qin, Shuangxi, Zhang, Jianyuan, Xiao, Jian, Liu & Yajuan, Sun 2013, Phys. Plasmas, 20, 084503CrossRefGoogle Scholar
Viñas, A. F., P. S., Moya, R. E., Navarro, J. A., Valdivia, J. A., Araneda, & V., Muñoz 2015, J. Geophys. Res. Space Physics, 120, 33073317CrossRefGoogle Scholar