Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T22:10:41.907Z Has data issue: false hasContentIssue false

Systematic errors in dust mass fits: The role of dust opacity

Published online by Cambridge University Press:  10 June 2020

Lapo Fanciullo
Affiliation:
Academia Sinica Institute of Astronomy and Astrophysics, 11F of AS/NTU Astronomy-Mathematics Building, No.1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, R.O.C. email: [email protected]
Francisca Kemper
Affiliation:
Academia Sinica Institute of Astronomy and Astrophysics, 11F of AS/NTU Astronomy-Mathematics Building, No.1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, R.O.C. email: [email protected]
Sundar Srinivasan
Affiliation:
Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro # 8701 Ex-Hda. San José de la Huerta, Morelia, Michoacán. México. C.P.58089
Peter Scicluna
Affiliation:
Academia Sinica Institute of Astronomy and Astrophysics, 11F of AS/NTU Astronomy-Mathematics Building, No.1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, R.O.C. email: [email protected]
James M. Simpson
Affiliation:
Academia Sinica Institute of Astronomy and Astrophysics, 11F of AS/NTU Astronomy-Mathematics Building, No.1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, R.O.C. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The estimation of interstellar dust masses is an important pursuit in our understanding of both local and early Universe – see e.g. the “dust budget crisis”. One of the most used methods of estimating dust masses – dust emission fitting – requires an estimate of the dust opacity at far-infrared and submillimeter wavelengths, but in most models this quantity is based on extrapolation rather than on actual measurements. It is becoming more and more evident that the opacity in typical dust models differs from that of dust analogs measured in the lab, meaning that astronomical dust mass estimations may need to be revised. To estimate the systematic errors introduced by this mismatch, we calculated dust emission for a model where dust far-infrared opacity is the same as that measured in lab samples, then we fit the synthetic emission with a typical (modified blackbody) dust model. Our results show that, if interstellar dust is indeed similar to the lab dust analogs, most fits may overestimate dust masses by as much as an order of magnitude.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Casey, C. M. 2012, MNRAS, 425, 3094CrossRefGoogle Scholar
Clements, D. L., Pearson, C., Farrah, D., Greenslade, J., Bernard-Salas, J., González-Alfonso, E., Afonso, J., Efstathiou, A., Rigopoulou, D., Lebouteiller, V., Hurley, P. D., & Spoon, H. 2018, MNRAS, 475, 2097CrossRefGoogle Scholar
Compiègne, M., Verstraete, L., Jones, A., Bernard, J.-P., Boulanger, F., Flagey, N., Le Bourlot, J., Paradis, D., & Ysard, N. 2011, A&A, 525, A103Google Scholar
Coupeaud, A., Demyk, K., Meny, C., Nayral, C., Delpech, F., Leroux, H., Depecker, C., Creff, G., Brubach, J.-B., & Roy, P. 2011, A&A, 535, A124Google Scholar
Demyk, K., Meny, C., Lu, X.-H., Papatheodorou, G., Toplis, M. J., Leroux, H., Depecker, C., Brubach, J.-B., Roy, P., Nayral, C., Ojo, W.-S., Delpech, F., Paradis, D., & Gromov, V. 2017, A&A, 600, A123Google Scholar
Demyk, K., Meny, C., Leroux, H., Depecker, C., Brubach, J.-B., Roy, P., Nayral, C., Ojo, W.-S., & Delpech, F. 2017, A&A, 606, A50Google Scholar
James, A., Dunne, L., Eales, S., & Edmunds, M. G. 2002, MNRAS, 335, 753CrossRefGoogle Scholar
Köhler, M., Ysard, N., & Jones, A. P. 2015, A&A, 579, A15Google Scholar
Mennella, V., Brucato, J. R., Colangeli, L., Palumbo, P., & Bussoletti, E. 1998, ApJ, 496, 1058CrossRefGoogle Scholar
Rowlands, K., Gomez, H. L., Dunne, L., Aragón-Salamanca, A., Dye, S., Maddox, S., da Cunha, E., & van der Werf, P. 2014, MNRAS, 441, 1040CrossRefGoogle Scholar
Srinivasan, S., Boyer, M. L., Kemper, F., Meixner, M., Sargent, B. A., & Riebel, D. 2016, MNRAS, 457, 2814CrossRefGoogle Scholar
Darach, Watson, Lise, Christensen, Kirsten, Kraiberg Knudsen, Johan, Richard, Anna, Gallazzi, & Michał, Jerzy Michałowski 2015, Nature, 519, 327Google Scholar