Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T20:47:06.287Z Has data issue: false hasContentIssue false

Supernovae and the Galactic Ecosystem

Published online by Cambridge University Press:  29 January 2014

Q. Daniel Wang*
Affiliation:
Astronomy Department, 619-E, LGRT, University of Massachusetts, 710 N. Pleasant St., Amherst, MA 01003, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernovae are the dominant source of stellar feedback, which plays an important role in regulating galaxy formation and evolution. While this feedback process is still quite uncertain, it is probably not due to individual supernova remnants as commonly observed. Most supernovae likely take place in low-density, hot gaseous environments, such as superbubbles and galactic bulges, and typically produce no long-lasting bright remnants. I review recent observational and theoretical work on the impact of such supernovae on galaxy ecosystems, particularly on hot gas in superbubbles and galactic spheroids.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bogdan, A. & Gilfanov, M. 2008, MNRAS, 388, 56Google Scholar
Bregman, J. N. 1980, ApJ, 237, 280CrossRefGoogle Scholar
Bregman, J. N & Parriott, J. R. 2009, ApJ, 699, 923Google Scholar
Buckley, D. & Schneider, S. E. 1995, ApJ, 446, 279CrossRefGoogle Scholar
Butt, Yousaf M. & Bykov, Andrei M. 2008, ApJ (Letters) 677, 21Google Scholar
Bykov, A. M. & Fleishman, D. G. 1992, MNRAS, 255, 269Google Scholar
Cho, H. & Kang, H., 2008, New Astron., 13, 163Google Scholar
Chu, Y.-H. & Mac Low, M. 1990, ApJ, 365, 510Google Scholar
Ciotti, L., Pellegrini, S., Renzini, A., & D'Erocole, A. 1991, ApJ, 376, 380Google Scholar
David, L. P., Jones, C., Forman, W., Vargas, I. M., & Nulsen, P., 2006, ApJ, 653, 207Google Scholar
Dong, H., Wang, Q. D., & Morris, M. R. 2012, MNRAS, 425, 884Google Scholar
Everett, J. E. & Churchwell, E. 2010, ApJ, 713, 592Google Scholar
Fisk, L. A. & Gloeckler, G. 2012, ApJ, 744, 127Google Scholar
Fukugita, M., et al. 1998, ApJ, 503, 518Google Scholar
Higdon, J. C. & Ligenfelter, R. E. 2005, ApJ, 628, 738Google Scholar
Jaskot, A. E.et al. 2011, ApJ, 729, 28Google Scholar
Krause, M.et al. 2013, A&A, 550, 49Google Scholar
Li, Z. Y., & Wang, Q. D. 2007, ApJ, 668, L39CrossRefGoogle Scholar
Mac Low, M.-M. & McCray, R. 1988, ApJ, 324, 776CrossRefGoogle Scholar
Mathews, W. G. & Baker, J. C. 1971, ApJ, 170, 241Google Scholar
Monaco, P. 2004, MNRAS, 354, 151Google Scholar
Oey, M. S. 2009, in AIP Conf. Ser. 1156, The Local Bubble and Beyond II, ed.: Smith, R. K., Snowden, S. L., & Kuntz, K. D. (Melville, NY: AIP), 295Google Scholar
Parizot, E., et al. 2004, A&A, 424, 747Google Scholar
Rajagopal, J.et al. 2007, ApJ, 671, 2017Google Scholar
Smith, D. A. & Wang, Q. D. 2004, ApJ, 611, 881Google Scholar
Tüllmann, R., et al. 2009, ApJ, 707, 1361Google Scholar
Tang, S. K. & Wang, Q. D. 2005, ApJ, 628, 205Google Scholar
Tang, S. K. & Wang, Q. D. 2009, 397, 2106Google Scholar
Tang, S. K., Wang, Q. D., Lu, Y., & Mo, H. J. 2009a, MNRAS, 392, 77Google Scholar
Tang, S. K., Wang, Q. D., Joung, M. K. R., & Mac Low, M. M. 2009b, 398, 1468Google Scholar
Tang, S. K. & Wang, Q. D. 2010, MNRAS, 408, 1011Google Scholar
Wang, Q. & Helfand, D. J. 1991, ApJ, 373, 497Google Scholar
Wang, Q. D. 2010, PNAS, 107, 7168Google Scholar
Weaver, , et al. 1977, ApJ, 218, 377Google Scholar
Yamaguchi, H., Sawada, M., & Bamba, A. 2010, ApJ, 715, 412CrossRefGoogle Scholar