Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T08:46:12.471Z Has data issue: false hasContentIssue false

Supernova remnants dynamics

Published online by Cambridge University Press:  17 October 2017

Anne Decourchelle*
Affiliation:
Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu - CNRS - Universite Paris Diderot, CEA-Saclay, 91191 Gif sur Yvette, France, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernova remnants are the site of a number of physical processes (shock-heating, non-equilibrium ionization, hydrodynamic instabilities, particle acceleration, magnetic field amplification). Their related emission processes provide us with a large set of observational data. Supernova remnants result from the interaction of high-velocity material ejected by the supernova explosion with the medium surrounding the progenitor star. This interaction gives rise to a double-shock structure that lasts for hundreds of years, with a forward shock and a reverse shock compressing and heating to tens million of degrees the surrounding medium and the ejecta, respectively. It is mostly in this phase that young supernova remnants provide information on their explosion mechanism through spectro-imaging observations of the ejected nucleosynthesis products and their dynamics, notably in the X-ray domain. I will review these observations and their implications for our current understanding of the dynamics of supernova remnants. I will conclude on the prospects with future facilities.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Arnett, W. D. 1988, ApJ, 331, 377 CrossRefGoogle Scholar
Axford, W. I. 1981, in: Setti, G., Spada, G., & Wolfendale, A. W. (eds.), Origin of Cosmic Rays, Proc. IAU Symposium No. 94 (Dordrecht: Reidel), p. 339 CrossRefGoogle Scholar
Badenes, C., Borkowski, K. J., Hughes, J. P., Hwang, U., & Bravo, E. 2006, ApJ, 645, 1373 CrossRefGoogle Scholar
Barret, D., den Herder, J.-W., Piro, L., Ravera, L., et al. 2013, Supporting paper for the science theme “The Hot and Energetic Universe” to be implemented by the Athena+ X-ray observatory, astro-ph/arXiv:1308.6784Google Scholar
Berezhko, E. G. & Ellison, D. C. 1999, ApJ, 526, 385 CrossRefGoogle Scholar
Blandford, R. D. & Eichler, D. 1987, Phys. Report, 154, 1 CrossRefGoogle Scholar
Blasi, P. 2004, Astropart. Phys, 21, 45 CrossRefGoogle Scholar
Blondin, J. M. & Ellison, D. C. 2001, ApJ, 560, 244 CrossRefGoogle Scholar
Burrows, J. M., 2005, in: Turatto, M., Benetti, S., Zampieri, L., & Shea, W. (eds) 1604-2004: Supernovae as Cosmological Lighthouses, Proc. ASP Conf. Ser. No. 342 (San Francisco: Astronomy Society of the Pacific), p 184 Google Scholar
Chevalier, R. A. 1982, ApJ, 258, 790 CrossRefGoogle Scholar
Chevalier, R. A. 1983, ApJ, 258, 790 CrossRefGoogle Scholar
Chevalier, R. A., Blondin, J. M., & Emmering, R. T. 1992, ApJ, 392, 118 CrossRefGoogle Scholar
Decourchelle, A., Ballet, J., & Ellison, D. C. 2000, ApJ, 365, L218 Google Scholar
Decourchelle, A., et al. 2001, ApJ, 543, L57 CrossRefGoogle Scholar
Decourchelle, A., Costantini, E., Badenes, C., Ballet, J., & Bamba, A. et al. 2013, Supporting paper for the science theme “The Hot and Energetic Universe” to be implemented by the Athena+ X-ray observatory, astro-ph/arXiv:1306.2335Google Scholar
Dwarkadas, V. V. & Chevalier, R. A. 1998, ApJ, 497, 807 CrossRefGoogle Scholar
Ferrand, J., Decourchelle, A., Ballet, J., Teyssier, R., & Frachetti, F. 2010, A&A, 509, L10 Google Scholar
Ferrand, J., Decourchelle, A., & Safi-Harb, S. 2012, A&A, 760, 34 Google Scholar
Ferrand, J., Decourchelle, A., & Safi-Harb, S. 2014, A&A, 789, 49 Google Scholar
Fesen, R. A. 2001, ApJS, 133, 161 CrossRefGoogle Scholar
Fesen, R. A. & Milisavljevic, D. 2016, ApJ, 818, 17 CrossRefGoogle Scholar
Grefenstette, J. P. et al. 2017, ApJ, 834, 19 CrossRefGoogle Scholar
Hughes, J. P., Rakowski, C. E., Burrows, D. N. & Slane, P. O. 2000, ApJ, 528, L109 CrossRefGoogle Scholar
Hwang, U., Szymkowiak, A. E., Petre, R., & Holt, S. S. 2001, ApJ, 560, L179 CrossRefGoogle Scholar
Hwang, U., et al. 2004, ApJ, 615, L117 CrossRefGoogle Scholar
Li, J.-T., Decourchelle, A., Miceli, M., Vink, J., & Bocchino, F. 2015, MNRAS, 453, 3953 Google Scholar
Krause, O., et al. 2008, Nature, 456, 617 CrossRefGoogle Scholar
Laming, J. M., Hwang, U., Radics, B., Lekli, G., & Takacs, E. 2006, ApJ, 644, L260 CrossRefGoogle Scholar
Lopez, L. A., Ramirez-Ruiz, E., Huppenkothen, D., Badenes, C., & Pooley, D. A. 2011, ApJ, 732, 114 CrossRefGoogle Scholar
Miceli, M., Bocchino, F., Decourchelle, A., Maurin, G., Vink, J., et al. 2012, A&A, 546, A66 Google Scholar
Miceli, M., Sciortino, S., Troja, E., & Orlando, S. 2015, ApJ, 805, 120 CrossRefGoogle Scholar
McKee, C. F. 1974, ApJ, 188, 335 CrossRefGoogle Scholar
Patnaude, D. J. & Fesen, R. A. 2014, ApJ, 789, 138 CrossRefGoogle Scholar
Patnaude, D. J. et al. 2015, ApJ, 803, 101 CrossRefGoogle Scholar
Rau, A., Meidinger, N., Nandra, K., Porro, M., Barret, D., et al. 2013, Supporting paper for the science theme “The Hot and Energetic Universe” to be implemented by the Athena+ X-ray observatory, astro-ph/arXiv:1308.6785Google Scholar
Warren, J. S., Hughes, J. P., Badenes, C., Ghavamian, P., McKee, C. F. et al. 2005, ApJ, 634, 376 CrossRefGoogle Scholar
Willingale, R., Bleeker, J. A. M., van der Heyden, K. J., Kaastra, J. S., & Vink, J. 2002, A&A, 381, 1039 Google Scholar
Willingale, R., Pareschi, G., Christensen, F., & den Herder, J.-W. 2013, Supporting paper for the science theme “The Hot and Energetic Universe” to be implemented by the Athena+ X-ray observatory, astro-ph/arXiv:1307.1709Google Scholar
Yamaguchi, H., Badenes, C., Petre, R., Nakano, T., Castro, D. et al. 2014, ApJ, 785, L27 CrossRefGoogle Scholar
Yamaguchi, H., Hughes, J. P., Badenes, C., Bravo, E., Seitenzahl, I. V., et al. 2017, ApJ, 834, 124 CrossRefGoogle Scholar