Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T04:59:51.705Z Has data issue: false hasContentIssue false

Supernova Nucleosynthesis in the early universe

Published online by Cambridge University Press:  01 June 2008

Nozomu Tominaga
Affiliation:
Optical and Infrared Astronomy Division, National Astronomical Observatory, Mitaka, Tokyo, Japan email: [email protected]
Hideyuki Umeda
Affiliation:
Department of Astronomy, School of Science, University of Tokyo, Bunkyo, Tokyo, Japan
Keiichi Maeda
Affiliation:
Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba, Japan
Ken'ichi Nomoto
Affiliation:
Department of Astronomy, School of Science, University of Tokyo, Bunkyo, Tokyo, Japan Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba, Japan
Nobuyuki Iwamoto
Affiliation:
Nuclear Data Center, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The first metal enrichment in the universe was made by supernova (SN) explosions of population (Pop) III stars. The history of chemical evolution is recorded in abundance patterns of extremely metal-poor (EMP) stars. We investigate the properties of nucleosynthesis in Pop III SNe by comparing their yields with the abundance patterns of the EMP stars. We focus on (1) jet-induced SNe with various properties of the jets, especially energy deposition rates [Ėdep = (0.3 − 1500) × 1051 ergs s−1], and (2) SNe of stars with various main-sequence masses (Mms = 13 − 50M) and explosion energies [E = (1 − 40) × 1051ergs]. The varieties of Pop III SNe can explain the observations of the EMP stars: (1) higher [C/Fe] for lower [Fe/H] and (2) trends of abundance ratios [X/Fe] against [Fe/H].

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Amati, L., Della Valle, M., Frontera, F., et al. 2007, A&A, 463, 913Google Scholar
Beers, T.C. & Christlieb, N. 2005, ARAA, 43, 531CrossRefGoogle Scholar
Cayrel, R., Depagne, E., Spite, M., et al. 2004, A&A, 416, 1117Google Scholar
Depagne, E., Hill, V., Spite, M., et al. 2002, A&A, 390, 187Google Scholar
Frail, D.A., Kulkarni, S. R., Sari, R., et al. 2001, ApJ (Letters), 562, L55Google Scholar
Fryer, C. & Mészáros, P. 2003, ApJ (Letters), 588, L25Google Scholar
Galama, T. J., Vreeswijk, P. M., van Paradijs, J., et al. 1998, Nature, 395, 670Google Scholar
Honda, S., Aoki, W., Kajino, T., et al. 2004, ApJ, 607, 474Google Scholar
Iwamoto, N., Umeda, H., Tominaga, N., Nomoto, K., & Maeda, K. 2005, Science, 309, 451Google Scholar
Maeda, K., Nakamura, T., Nomoto, K., et al. 2002, ApJ, 565, 405Google Scholar
Maeda, K. & Nomoto, K. 2003, ApJ, 598, 1163Google Scholar
Nagataki, S., Mizuta, A., & Sato, K. 2006, ApJ, 647, 1255CrossRefGoogle Scholar
Nomoto, K., Tominaga, N., Umeda, H., et al. 2006, Nucl. Phys. A, 777, 424 (astro-ph/0605725)CrossRefGoogle Scholar
Tanaka, M., Tominaga, N., Nomoto, K., et al. 2008, ApJ, submitted (arXiv:0807.1674)Google Scholar
Thornton, K., Gaudlitz, M., Janka, H.-Th., & Steinmetz, M. 1998, ApJ, 500, 95Google Scholar
Tominaga, N., Maeda, K., Umeda, H., et al. 2007a, ApJ (Letters), 657, L77Google Scholar
Tominaga, N., Umeda, H., & Nomoto, K. 2007b, ApJ, 660, 516CrossRefGoogle Scholar
Tominaga, N. 2007, ApJ, submitted (arXiv:0711.4815)Google Scholar
Umeda, H. & Nomoto, K. 2002, ApJ, 565, 385Google Scholar
Umeda, H. & Nomoto, K. 2005, ApJ, 619, 427Google Scholar
Woosley, S. E. & Weaver, T. A. 1995, ApJS, 101, 181CrossRefGoogle Scholar