Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T05:51:04.637Z Has data issue: false hasContentIssue false

Superluminous Supernovae

Published online by Cambridge University Press:  05 September 2012

Robert M. Quimby*
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe Todai Institutes for Advanced Study, University of Tokyo 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8583, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Not long ago the sample of well studied supernovae, which were gathered mostly through targeted surveys, was populated exclusively by events with absolute peak magnitudes fainter than about −20. Modern searches that select supernovae not just from massive hosts but from dwarfs as well have produced a new census with a surprising difference: a significant percentage of supernovae found in these flux limited surveys peak at −21 magnitude or brighter. The energy emitted by these superluminous supernovae in optical light alone rivals the total explosion energy available to typical core collapse supernovae (> 1051 erg). This makes superluminous supernovae difficult to explain through standard models. Adding further complexity to this picture are the distinct observational properties of various superluminous supernovae. Some may be powered in part by interactions with a hydrogen-rich, circumstellar material but others appear to lack hydrogen altogether. Some appear to be powered by large stores of radioactive material, while others fade quickly and have stringent limits on 56-Ni production. In this talk I will discuss the current observational constrains on superluminous supernova and the prospects for revealing their origins.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Akerlof, C. W., Kehoe, R. L., McKay, T. A., et al. 2003, PASP, 115, 132CrossRefGoogle Scholar
Arcavi, I., Gal-Yam, A., Kasliwal, M., et al. 2010, ApJ, 721, 777CrossRefGoogle Scholar
Barbary, K., Dawson, K. S., Tokita, K., et al. 2009, ApJ, 690, 1358CrossRefGoogle Scholar
Barbon, R., Buondí, V., Cappellaro, E., & Turatto, M. 1999, A&A (Supplement), 139, 531Google Scholar
Branch, D., Fisher, A., & Nugent, P. 1993, AJ, 106, 2383CrossRefGoogle Scholar
Chatzopoulos, E., Wheeler, J. C., Vinko, J., et al. 2011, ApJ, 729, 143CrossRefGoogle Scholar
Chomiuk, L., Chornock, R., Soderberg, A. M., et al. 2011, ApJ, 743, 114CrossRefGoogle Scholar
Deng, J. S., Hatano, K., Nakamura, T., et al. 2001, in Astronomical Society of the Pacific Conference Series, Vol. 251, New Century of X-ray Astronomy, ed. Inoue, H. & Kunieda, H., 238Google Scholar
Drake, A. J., Djorgovski, S. G., Mahabal, A., et al. 2011, ApJ, 735, 106CrossRefGoogle Scholar
Drake, A. J., Djorgovski, S. G., Prieto, J. L., et al. 2010, ApJ, 718, L127CrossRefGoogle Scholar
Gal-Yam, A., Mazzali, P., Ofek, E. O., et al. 2009, Nature, 462, 624CrossRefGoogle Scholar
Gehrels, N., Chincarini, G., Giommi, P., et al. 2004, ApJ, 611, 1005CrossRefGoogle Scholar
Gezari, S., Halpern, J. P., Grupe, D., et al. 2009, ApJ, 690, 1313CrossRefGoogle Scholar
Kasen, D. & Bildsten, L. 2010, ApJ, 717, 245CrossRefGoogle Scholar
Kirshner, R. P., Jeffery, D. J., Leibundgut, B., et al. 1993, ApJ, 415, 589CrossRefGoogle Scholar
Law, N. M., Kulkarni, S. R., Dekany, R. G., et al. 2009, PASP, 121, 1395CrossRefGoogle Scholar
Li, W., Leaman, J., Chornock, R., et al. 2011, MNRAS, 413Google Scholar
Miller, A. A., Chornock, R., Perley, D. A., et al. 2009, ApJ, 690, 1303CrossRefGoogle Scholar
Neill, J. D., Sullivan, M., Gal-Yam, A., et al. 2011, ApJ, 727, 15CrossRefGoogle Scholar
Ofek, E. O., Cameron, P. B., Kasliwal, M. M., et al. 2007, ApJ, 659, L13CrossRefGoogle Scholar
Pastorello, A., Smartt, S. J., Botticella, M. T., et al. 2010, ApJ, 724, L16CrossRefGoogle Scholar
Quimby, R. M., Aldering, G., Wheeler, J. C., et al. 2007, ApJ, 668, L99CrossRefGoogle Scholar
Quimby, R. M., Kulkarni, S. R., Kasliwal, M. M., et al. 2011, Nature, 474, 487CrossRefGoogle Scholar
Rau, A., Kulkarni, S. R., Law, N. M., et al. 2009, PASP, 121, 1334CrossRefGoogle Scholar
Rest, A., Foley, R. J., Gezari, S., et al. 2011, ApJ, 729, 88CrossRefGoogle Scholar
Richardson, D., Branch, D., Casebeer, D., et al. 2002, AJ, 123, 745CrossRefGoogle Scholar
Roming, P. W. A., Kennedy, T. E., Mason, K. O., et al. 2005, Space Sci. Revs, 121, 95CrossRefGoogle Scholar
Smith, N., Chornock, R., Li, W., et al. 2008, ApJ, 686, 467CrossRefGoogle Scholar
Smith, N., Chornock, R., Silverman, J. M., Filippenko, A. V., & Foley, R. J. 2010, ApJ, 709, 856CrossRefGoogle Scholar
Smith, N., Li, W., Foley, R. J., et al. 2007, ApJ, 666, 1116CrossRefGoogle Scholar
Umeda, H. & Nomoto, K. 2008, ApJ, 673, 1014CrossRefGoogle Scholar
Woosley, S. E. 2010, ApJ, 719, L204CrossRefGoogle Scholar
Woosley, S. E., Blinnikov, S., & Heger, A. 2007, Nature, 450, 390CrossRefGoogle Scholar