Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T17:02:55.811Z Has data issue: false hasContentIssue false

The SUNBIRD Survey: Insights into small-scale star formation mechanisms through near-infrared study of Young Massive Clusters

Published online by Cambridge University Press:  09 June 2023

Zara Randriamanakoto
Affiliation:
South African Astronomical Observatory P.O Box 9, Observatory 7935, South Africa email: [email protected]
P. Väisänen
Affiliation:
South African Astronomical Observatory P.O Box 9, Observatory 7935, South Africa email: [email protected] Southern African Large Telescope P.O Box 9, Observatory 7935, South Africa
P. Ranaivomanana
Affiliation:
Department of Astrophysics/IMAPP, Radbourd Observatory P.O Box 9010, 6500 GL, Nijmegen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We draw the K-band luminosity functions (CLFs) of young massive clusters (YMCs) hosted by 34 SUNBIRD targets to evaluate the impact of the host galaxy environment on their YMC properties. The depth and high resolution of the NIR images (PSF ∼ 0.1”) allow us to test whether CLF power-law slopes (α) of high star-forming galaxies are similar to those of gas-poor low star formation rate (SFR) galaxies. We found that α ranges between 1.53 and 2.41 with a median value of 1.87 ± 0.23. We also performed correlation searches between α and the host global properties and noticed that α decreases with an increasing SFR and SFR density. On sub-galactic scales, CLF slopes of cluster-rich galaxies differ by ∼0.5. Our NIR CLF analyses suggest that the extreme environment of high SFR galaxies such as the SUNBIRD sample is likely to affect the formation mechanisms of YMCs and hence to govern the ongoing small-scale SF processes of the host galaxy.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Adamo, A., Ryon, J. E., Messa, M., et al. 2017, ApJ, 841, 131 CrossRefGoogle Scholar
Bastian, N. 2016, EAS Publications Series, 80, 5 CrossRefGoogle Scholar
Bastian, N., Adamo, A., Gieles, M., et al. 2012, MNRAS, 419, 2606 CrossRefGoogle Scholar
Cook, D. O., Dale, D. A., Lee, J. C., et al. 2016, MNRAS, 462, 3766 CrossRefGoogle Scholar
Cook, D. O., Lee, J. C., Adamo, A., et al. 2019, MNRAS, 484, 4897 CrossRefGoogle Scholar
Efremov, Y. N. 1995, AJ, 110, 2757 CrossRefGoogle Scholar
Espada, D., Martin, S., Verley, S., et al. 2018, ApJ, 866, 77 CrossRefGoogle Scholar
Kool, E. C., Ryder, S., Kankare, E., et al. 2018, MNRAS, 473, 5641 CrossRefGoogle Scholar
Kruijssen, J. M. D. 2012, MNRAS, 426, 3008 CrossRefGoogle Scholar
Larson, K. L., Daz-Santos, T., Armus, L., et al. 2020, ApJ, 888, 92 CrossRefGoogle Scholar
Mattila, S., Visnen, P., Farrah, D., et al. 2007, ApJL, 659, L9 CrossRefGoogle Scholar
Mulia, A. J., Chandar, R., & Whitmore, B. C. 2016, ApJ, 826, 32 CrossRefGoogle Scholar
Pflamm-Altenburg, J., Gonzlez-Lpezlira, R. A., & Kroupa, P. 2013, MNRAS, 435, 2604 CrossRefGoogle Scholar
Ramphul, R. 2018, PhD thesis, Department of Astronomy, University of Cape Town, South AfricaGoogle Scholar
Randriamanakoto, Z., Escala, A., Visnen, P., et al. 2013a, ApJL, 775, L38 CrossRefGoogle Scholar
Randriamanakoto, Z., Visnen, P., Ranaivomanana, P., et al. 2022, MNRAS, 513, 4232 CrossRefGoogle Scholar
Randriamanakoto, Z., Visnen, P., Ryder, S.D., et al. 2013b, MNRAS, 431, 554 CrossRefGoogle Scholar
Randriamanakoto, Z., Visnen, P., Ryder, S. D., et al. 2019, MNRAS, 482, 2530 CrossRefGoogle Scholar
Visnen, P., Randriamanakoto, Z., Escala, A., et al. 2014, Massive Young Star Clusters Near and Far: From the Milky Way to Reionization, p. 185 Google Scholar
Whitmore, B. C., Chandar, R., Bowers, A. S., et al. 2014, AJ, 147, 78CrossRefGoogle Scholar