Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T11:36:36.411Z Has data issue: false hasContentIssue false

Studying Magnetic Field Amplification in Interacting Galaxies Using Numerical Simulations

Published online by Cambridge University Press:  20 January 2023

Simon Selg
Affiliation:
Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany email: [email protected]
Wolfram Schmidt
Affiliation:
Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There are indications that the magnetic field evolution in galaxies might be massively shaped by tidal interactions and mergers between galaxies. The details of the connection between the evolution of magnetic fields and that of their host galaxies is still a field of research.

We use a combined approach of magnetohydrodynamics for the baryons and an N-body scheme for the dark matter to investigate magnetic field amplification and evolution in interacting galaxies.

We find that, for two colliding equal-mass galaxies and for varying initial relative spatial orientations, magnetic fields are amplified during interactions, yet cannot be sustained. Furthermore, we find clues for an active mean-field dynamo.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Beck, R. 2015, A&A Rev., 24, 4 Google Scholar
Beck, R., Brandenburg, A., Moss, D., et al. 1996, ARAA, 34(1), 155206 10.1146/annurev.astro.34.1.155CrossRefGoogle Scholar
Binney, J, Tremaine, S 2008, Galactic Dynamics10.1515/9781400828722CrossRefGoogle Scholar
Brandenburg, A., Subramanian, K. 2005, Phys. Rep., 417, 1209 CrossRefGoogle Scholar
Bryan, G. L, Norman, M. L, O’Shea, B. W., et al. 2014, ApJS, 211(2), 19 CrossRefGoogle Scholar
Cabral, B., Leedom, L. C. 1993, Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (New York) Google Scholar
Drakos, N. E., Taylor, J. E., Benson, A. J. 2017, MNRAS, 468(2), 23452358 CrossRefGoogle Scholar
Drzazga, R. T., Chyy, K. T., Jurusik, W., et al. 2011, A&A, 533, A22 Google Scholar
Freeman, K. C. 1970, ApJ, 160, 811 10.1086/150474CrossRefGoogle Scholar
Grete, P., Latif, M. A., Schleicher, D. R. G., et al. 2019, MNRAS, 487(4), 45254535 CrossRefGoogle Scholar
Grete, P., Vlaykov, D. G., Schmidt, W., et al. 2017, Phys. Rev. E., 95, 033206 CrossRefGoogle Scholar
Helmi, A. 2020, ARAA, 58, 205256 CrossRefGoogle Scholar
Hernquist, L. 1990, ApJ, 356, 359 CrossRefGoogle Scholar
Kotarba, H., Karl, S. J., Naab, T., et al. 2010, ApJ, 716(2), 14381452 CrossRefGoogle Scholar
Kotarba, H., Lesch, H., Dolag, K., et al. 2011, MNRAS, 415(4), 31893218 CrossRefGoogle Scholar
Navarro, J. F., Frenk, C. S., White, S. D. M. 1996, ApJ, 462, 563 CrossRefGoogle Scholar
Ntormousi, E., Tassis, K., Del Sordo, F., et al. 2020, A&A, 641, A165 Google Scholar
Parker, E. N. 1970, ApJ, 160, 383 10.1086/150442CrossRefGoogle Scholar
Parker, E. N. 1971, ApJ, 163, 255 CrossRefGoogle Scholar
Patton, D. R., Wilson, K. D., Metrow, C. J., et al. 2020, MNRAS, 494(4), 49694985 CrossRefGoogle Scholar
Pillepich, A., Springel, V., Nelson, D., et al. 2018, MNRAS, 473(3), 40774106 CrossRefGoogle Scholar
Renaud, F., Bournard, F., Agertz, O., et al. 2019, A&A, 625, A65 Google Scholar
Renaud, F., Bournard, F., Duc, P.-A. 2015, MNRAS, 446(2), 20382054 CrossRefGoogle Scholar
Rodenbeck, K., Schleicher, D. R. G. 2016, A&A, 593, A89 Google Scholar
Schober, J., Schleicher, D. R. G., Klessen, R. S. 2013, A&A, 560, A87 Google Scholar
Springel, V., Di Matteo, T., Hernquist, L. 2005, MNRAS, 361 (3), 776794 CrossRefGoogle Scholar
Steenbeck, M., Krause, F., Rädler, K.-H. 1966, Zeitschrift für Naturforschung A, 21(4), 369376 CrossRefGoogle Scholar
Steinwandel, U. P., Beck, M. C., Arth, A., et al. 2019, MNRAS, 438(1), 10081028 CrossRefGoogle Scholar
Subramanian, K. 2016, Reports on Progress in Physics, 79(7), 076901 CrossRefGoogle Scholar
Turk, M. J., Smith, B. D., Oishi, J. S., et al. 2011, ApJS, 192(1), 9 CrossRefGoogle Scholar
Wang, H.-H., Klessen, R. S., Dullemond, C. P., et al. 2010, MNRAS, 407(2), 705720 CrossRefGoogle Scholar