Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T05:24:37.211Z Has data issue: false hasContentIssue false

Study of the thick disc of the Milky Way from a population synthesis model

Published online by Cambridge University Press:  02 August 2018

G. Nasello
Affiliation:
UTINAM Institute, University of Bourgogne-Franche-Comté, UMR CNRS 6213, 41 bis avenue de l’Observatoire BP 1615 25010 Besançon Cedex
A. C. Robin
Affiliation:
UTINAM Institute, University of Bourgogne-Franche-Comté, UMR CNRS 6213, 41 bis avenue de l’Observatoire BP 1615 25010 Besançon Cedex
C. Reylé
Affiliation:
UTINAM Institute, University of Bourgogne-Franche-Comté, UMR CNRS 6213, 41 bis avenue de l’Observatoire BP 1615 25010 Besançon Cedex
N. Lagarde
Affiliation:
UTINAM Institute, University of Bourgogne-Franche-Comté, UMR CNRS 6213, 41 bis avenue de l’Observatoire BP 1615 25010 Besançon Cedex
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The thick disc is a major component of the Milky Way but its epoch of formation and characteristics are still not yet well constrained. The Besançon Galaxy Model (BGM, Robin et al. 2003) is a population synthesis model based on a scenario of formation and evolution of the Galaxy, a star formation history, and a set of stellar evolution models. Thanks to Lagarde et al. (2017), new evolutionary tracks have been introduced into the Besancon Galaxy Model (STAREVOL, Lagarde et al. 2012) to provide global asteroseismic and surface chemical properties along the evolutionary stages. This updated Galaxy model will allow us to constrain the thick disc structure and history using the Markov Chain Monte Carlo fitting method (MCMC). We show preliminary results applying this MCMC method on the 2MASS photometric survey.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Bensby, T., Alves-Brito, A., Oey, M. S., Yong, D., & Meléndez, J., 2011, ApJL, 735, 2, L46, 6Google Scholar
Bergbusch, P. A. & Vandenberg, D. A., 1992, ApJS, 81, 163220Google Scholar
Chambers, K. C., & Pan-STARRS team, 2017, AAS 229, 223.03Google Scholar
Cheng, J. Y., et al. 2012, ApJ, 752, 1, 51, 12Google Scholar
Gilmore, G. & Reid, N., 1983, MNRAS, 202, 1025Google Scholar
Lagarde, N., Robin, A. C., Reylé, C., & Nasello, G., 2017, A&A, 601, A27, 8Google Scholar
Lagarde, N., et al. 2012, A&A, 543, A108, 14Google Scholar
Pinsonneault, M. H., et al. 2014, ApJS, 215, 2, 19, 23Google Scholar
Robin, A. C., Reylé, C., Derrière, S., & Picaud, S., 2003 A&A, 409, 523-540Google Scholar
Robin, A. C., Reylé, C., Fliri, J., Czekaj, M., Robert, C., & Martins, A., 2014 A&A, 569, A13, 26Google Scholar