Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T02:23:40.429Z Has data issue: false hasContentIssue false

Structure of Quark Stars

Published online by Cambridge University Press:  20 March 2013

Fridolin Weber
Affiliation:
Department of Physics, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA email: [email protected]
Milva Orsaria
Affiliation:
CONICET, Rivadavia 1917, 1033 Buenos Aires; Gravitation, Astrophysics and Cosmology Group, Facultad de Ciencias Astronómicas y Geofisicas, Paseo del Bosque S/N (1900), Universidad Nacional de La Plata UNLP, La Plata, Argentina email: [email protected]
Hilario Rodrigues
Affiliation:
Centro Federal de Educação Tecnológica do Rio de Janeiro, Av Maracanã 249, 20271-110, Rio de Janeiro, RJ, Brazil email: [email protected]
Shu-Hua Yang
Affiliation:
Institute of Astrophysics, Huazhong Normal University, Wuhan, 430079, P. R. China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper gives an brief overview of the structure of hypothetical strange quarks stars (quark stars, for short), which are made of absolutely stable 3-flavor strange quark matter. Such objects can be either bare or enveloped in thin nuclear crusts, which consist of heavy ions immersed in an electron gas. In contrast to neutron stars, the structure of quark stars is determined by two (rather than one) parameters, the central star density and the density at the base of the crust. If bare, quark stars possess ultra-high electric fields on the order of 1018 to 1019 V/cm. These features render the properties of quark stars more multifaceted than those of neutron stars and may allow one to observationally distinguish quark stars from neutron stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Proc. Int. Workshop on Strange Quark Matter in Physics and Astrophysics 1991, Madsen, J. and Haensel, P. (eds.), Nucl. Phys. B (Proc. Suppl.), 24BGoogle Scholar
Alcock, C., Farhi, E., & Olinto, A. V. 1986, ApJ, 310, 261CrossRefGoogle Scholar
Alcock, C. & Olinto, A. V. 1988, Ann. Rev. Nucl. Part. Sci., 38, 161CrossRefGoogle Scholar
Alford, M. 2001, Ann. Rev. Nucl. Part. Sci., 51, 131Google Scholar
Alford, M. G., Schmitt, A., Rajagopal, K., & Scháfer, T. 2008, Rev. Mod. Phys., 80, 1455Google Scholar
Bodmer, A. R. 1971, Phys. Rev. D, 4, 1601Google Scholar
Cheng, K. S. & Harko, T. 2003, ApJ, 596, 451Google Scholar
Farhi, E. & Jaffe, R. L. 1984, Phys. Rev. D, 30, 2379Google Scholar
Glendenning, N. K. & Weber, F. 1992, ApJ, 400, 647Google Scholar
Glendenning, N. K., Kettner, Ch., & Weber, F. 1995, ApJ, 450, 253Google Scholar
Glendenning, N. K. 2000, Compact Stars, Nuclear Physics, Particle Physics, and General Relativity, 2nd ed. (Springer-Verlag, New York)Google Scholar
Kettner, Ch., Weber, F., Weigel, M. K., & Glendenning, N. K. 1995, Phys. Rev. D, 51, 1440CrossRefGoogle Scholar
Madsen, J. 1999, Lecture Notes in Physics, 516, 162Google Scholar
Negreiros, R., Weber, F., Malheiro, M., & Usov, V. 2009, Phys. Rev. D, 80, 083006Google Scholar
Negreiros, R. P., Mishustin, I. N., Schramm, S., & Weber, F. 2010, Phys. Rev. D, 82, 103010Google Scholar
Niebergal, B., Ouyed, R., Negreiros, R., & Weber, F. 2010, Phys. Rev. D, 81, 043005Google Scholar
Orsaria, M, Ranea-Sandoval, I. F. & Vucetich, H. 2011, ApJ, 734, 41Google Scholar
Ouyed, R., Dey, J., & Dey, M. 2002, A&A, 390, L39Google Scholar
Page, D. & Reddy, S. 2006, Ann. Rev. Nucl. Part. Sci., 56, 327Google Scholar
Provencal, J. L., Shipman, H. L., Hog, E. & Thejll, P. 1998, ApJ, 494, 759Google Scholar
Rajagopal, K. & Wilczek, F. 2001, The Condensed Matter Physics of QCD, At the Frontier of Particle Physics/Handbook of QCD, ed. Shifman, M. (World Scientific)CrossRefGoogle Scholar
Rajagopal, K. & Wilczek, F. 2001, Phys. Rev. Lett., 86, 3492Google Scholar
Rodrigues, H., Duarte, S. B., & de Oliveira, J. C. T. 2011, ApJ, 730, 31Google Scholar
Sagert, I., Wietoska, M., & Schaffner-Bielich, J. 2006 J. Phys. G., 32, S241Google Scholar
Terazawa, H. 1979, INS-Report-338 (INS, Univ. of Tokyo; 1989 J. Phys. Soc. Japan, 58, 3555; 1989 ibid., 58, 4388; 1990 ibid., 59, 1199Google Scholar
Usov, V. V. 1998, Phys. Rev. Lett., 80, 230Google Scholar
Usov, V. V. 2001, ApJ, 550, L179Google Scholar
Usov, V. V. 2001, ApJ, 559, L137Google Scholar
Vogt, C., Rapp, R., & Ouyed, R. 2004, Nucl. Phys., A735, 543Google Scholar
Weber, F. 1999, Pulsars as Astrophysical Laboratories for Nuclear and Particle Physics, (IOP Publishing, Bristol, Great Britain).Google Scholar
Weber, F. 2005, Prog. Part. Nucl. Phys., 54, 193Google Scholar
Witten, E. 1984, Phys. Rev. D, 30, 272Google Scholar
Xu, R. X., Bastrukov, S. I., Weber, F., Yu, J. W., & Molodtsova, I. V. 2012, Phys. Rev. D, 85, 023008Google Scholar
Yang, S.-H., Weber, F., Negreiros, R., & Becker, W. 2012, Cooling Simulations of CCOs (in preparation)Google Scholar
Zdunik, J. L., Haensel, E., & Gourgoulhon, E. 2001, A&A, 372, 535Google Scholar