Article contents
Stellar-mass Black Holes in Globular Clusters: Dynamical consequences and observational signatures
Published online by Cambridge University Press: 11 March 2020
Abstract
Sizeable number of stellar-mass black holes (BHs) in globular clusters (GCs) can strongly influence the dynamical evolution and observational properties of their host cluster. Using results from a large set of numerical simulations, we identify the key ingredients needed to sustain a sizeable population of BHs in GCs up to a Hubble time. We find that while BH natal kick prescriptions are essential in determining the initial retention fraction of BHs in GCs, the long-term survival of BHs is determined by the size, initial central density and half-mass relaxation time of the GC. Simulated GC models that contain many BHs are characterized by relatively low central surface brightness, large half-light and core radii values. We also discuss novel ways to compare simulated results with available observational data to identify GCs that are most likely to contain many BHs.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 14 , Symposium S351: Star Clusters: From the Milky Way to the Early Universe , May 2019 , pp. 395 - 399
- Copyright
- © International Astronomical Union 2020
References
- 2
- Cited by