Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T20:03:04.170Z Has data issue: false hasContentIssue false

Stellar rotation bifurcation caused by tidal locking in the open cluster NGC 2287?

Published online by Cambridge University Press:  11 March 2020

Weijia Sun
Affiliation:
Kavli Institute for Astronomy & Astrophysics and Department of Astronomy, Peking University, Yi He Yuan Lu 5, Hai Dian District, Beijing100871, China email: [email protected] Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing100012, China
Chengyuan Li
Affiliation:
Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing100012, China School of Physics and Astronomy, Sun Yat-sen University, Zhuhai519082, China
Licai Deng
Affiliation:
Key Laboratory for Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing100012, China School of Astronomy and Space Science, University of the Chinese Academy of Sciences, Huairou101408, China Department of Astronomy, China West Normal University, Nanchong637002, China
Richard de Grijs
Affiliation:
Department of Physics and Astronomy, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia Research Centre for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Balaclava Road, Sydney, NSW 2109, Australia International Space Science Institute–Beijing, 1 Nanertiao, Hai Dian District, Beijing100190, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a detailed analysis of the projected stellar rotational velocities of the well-separated double main sequence (MS) in the young, ∼200 Myr-old Milky Way open cluster NGC 2287 and suggest that stellar rotation may drive the split MSs in NGC 2287. We find that the observed distribution of projected stellar rotation velocities could result from a dichotomous distribution of stellar rotation rates. We discuss whether our observations may reflect the effects of tidal locking affecting a fraction of the cluster’s member stars in stellar binary systems. The slow rotators are likely stars that initially rotated rapidly but subsequently slowed down through tidal locking induced by low-mass-ratio binary systems. However, the cluster may have a much larger population of short-period binaries than is usually seen in the literature, with relatively low secondary masses.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bastian, N., Cabrera-Ziri, I., Niederhofer, F., et al. 2017, MNRAS, 465, 4795CrossRefGoogle Scholar
Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127CrossRefGoogle Scholar
Cordoni, G., Milone, A. P., Marino, A. F., et al. 2018, ApJ, 869, 139CrossRefGoogle Scholar
Corsaro, E., Lee, Y.-N., Garca, R. A., et al. 2017, Nat. Astron., 1, 64CrossRefGoogle Scholar
D’Antona, F., Di Criscienzo, M., Decressin, T., et al. 2015, MNRAS, 453, 2637Google Scholar
D’Antona, F., Milone, A. P., Tailo, M., et al. 2017, Nat. Astron., 1, 186CrossRefGoogle Scholar
Dupree, A. K., Dotter, A., Johnson, C. I., et al. 2017, ApJL, 846, L1CrossRefGoogle Scholar
Goudfrooij, P., Puzia, T. H., Kozhurina-Platais, V., & Chandar, R. 2011a, ApJ, 737, 3CrossRefGoogle Scholar
Hurley, J. R., Tout, C. A., & Pols, O. R. 2002, MNRAS, 329, 897CrossRefGoogle Scholar
Mackey, A. D., Broby Nielsen, P., Ferguson, A. M. N., et al. 2008, ApJL, 681, L17CrossRefGoogle Scholar
Marino, A. F., Przybilla, N., Milone, A. P., et al. 2018, AJ, 156, 116CrossRefGoogle Scholar
Milone, A. P., Bedin, L. R., Piotto, G., et al. 2009, A&A, 497, 755Google Scholar
Milone, A. P., Bedin, L. R., Piotto, G., et al. 2015, MNRAS, 450, 3750CrossRefGoogle Scholar
Milone, A. P., Marino, A. F., Di Criscienzo, M., et al. 2018, MNRAS, 477, 2640CrossRefGoogle Scholar
Moe, M., & Di Stefano, R. 2017, ApJS, 230, 15CrossRefGoogle Scholar
Mosser, B., Gehan, C., Belkacem, K., et al. 2018, A&A, 618, A109Google Scholar
Palacios, A., Gebran, M., Josselin, E., et al. 2010, A&A, 516, A13Google Scholar
Royer, F., Zorec, J., & Gómez, A. E. 2007, A&A, 463, 671Google Scholar
Salinas, R., Pajkos, M. A., Strader, J., et al. 2016, ApJL, 832, L14CrossRefGoogle Scholar
Sun, W., de Grijs, R., Deng, L., et al. 2019, ApJ, 876, 113CrossRefGoogle Scholar
Sun, W., Li, C., Deng, L., et al. 2019, ApJ, 883, 182CrossRefGoogle Scholar
Yang, W., & Tian, Z. 2017, ApJ, 836, 102CrossRefGoogle Scholar
Zorec, J., & Royer, F. 2012, A&A, 537, A120Google Scholar