Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T12:49:10.900Z Has data issue: false hasContentIssue false

Stellar Populations in M31 from Broad-band Photometry

Published online by Cambridge University Press:  05 December 2011

Antti Tamm
Affiliation:
Tartu Observatory, Estonia e-mail: [email protected]
Elmo Tempel
Affiliation:
Tartu Observatory, Estonia e-mail: [email protected] The University of Tartu, Estonia
Peeter Tenjes
Affiliation:
Tartu Observatory, Estonia e-mail: [email protected] The University of Tartu, Estonia
Taavi Tuvikene
Affiliation:
Tartu Observatory, Estonia e-mail: [email protected] Vrije Universiteit Brussel, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Due to its proximity, size, complex structure and high inclination angle, M31 offers an excellent opportunity for studying galactic structures outside the Milky Way and for drawing implications for their cosmological origin. We have studied the stellar populations of M 31 using the Sloan Digital Sky Survey (SDSS) photometry and the Spitzer far-infrared (FIR) mappings of dust. Combining these data, we have constructed a 3-dimensional model of the galaxy, laying constraints on the intrinsic (dust-free) properties of the galaxy and its stellar populations: their apparent and intrinsic luminosities, luminosity distributions, colours, shapes and sizes. We have interpreted the derived spectral energy distributions with synthetic stellar populations created with the Starburst99 software, in order to constrain the ages and masses of the stellar components.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bellazzini, M., Cacciari, C., Federici, L., Pecci, F. F., & Rich, M., 2003, A&A, 405, 867Google Scholar
Bertin, E. & Arnouts, S. 1996, A&AS, 117, 393Google Scholar
Brown, T. M., Smith, E., Ferguson, H. C., Rich, R. M., Guhathakurta, P., Renzini, A., Sweigart, A. V., & Kimble, R. A., 2006, ApJ, 652, 323Google Scholar
Ibata, R., Martin, N. F., Irwin, M., Chapman, S., Ferguson, A. M. N., & Lewis, G. F., McConnachie, A. W., 2007, ApJ, 671, 1591Google Scholar
Koch, A.; Rich, R. M., Reitzel, D. B., Mori, M., Loh, Y.-S., Ibata, R., Martin, N., Chapman, S. C., Ostheimer, J., & Majewski, S. R.; Grebel, E. K., 2007, AN, 328, 653Google Scholar
Leitherer, C., Schaerer, D., Goldader, J. D., González Delgado, R. M., Robert, C., Kune, D. F., deAAAAMello, D. F., Devost, D., & Heckman, T. M. 1999, ApJS, 123, 3Google Scholar
Sarajedini, A. & Jablonka, P. 2005, AJ, 130, 1627Google Scholar
Tempel, E., Tamm, A., & Tenjes, P. 2010, A&A, 509 91Google Scholar
Tempel, E., Tuvikene, T., Tamm, A., & Tenjes, P. 2011, A&A, 526, 155Google Scholar
Worthey, G., España, A., MacArthur, L. A., & Courteau, S. 2005, ApJ, 631, 820Google Scholar