Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T12:16:52.793Z Has data issue: false hasContentIssue false

Stellar population properties of the most massive globular clusters and ultra-compact dwarf galaxies of the Fornax cluster

Published online by Cambridge University Press:  31 March 2017

Michael Hilker*
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748, Garching bei München, Germany email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Most ultra-compact dwarf galaxies (UCDs) and very massive globular clusters reside in nearby galaxy clusters or around nearby giant galaxies. Due to their distance (> 4 Mpc) and compactness (reff < 100 pc) they are barely resolved, and thus it is difficult to obtain their internal properties. Here I present our most recent attempts to constrain the mass function, stellar content and dynamical state of UCDs in the Fornax cluster. Thanks to radial velocity membership assignment of ~ 950 globular clusters (GCs) and UCDs in the core of Fornax, the shape of their mass function is well constrained. It is consistent with the ‘standard’ Gaussian mass function of GCs. Our recent simulations on the disruption process of nucleated dwarf galaxies in cluster environments showed that ~ 40% of the most massive UCDs should originate from nuclear star clusters. Some Fornax UCDs actually show evidence for this scenario, as revealed by extended low surface brightness disks around them and onsets of tidal tails. Multi-band UV to optical imaging as well as low to medium resolution spectroscopy revealed that there exist UCDs with youngish ages, (sub-)solar [α/Fe] abundances, and probably He-enriched populations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bassino, L. P., Faifer, F. R., Forte, J. C., Dirsch, B., Richtler, T., Geisler, D., & Schuberth, Y. 2006, A&A, 451, 789 Google Scholar
Brüns, R. C., Kroupa, P., & Fellhauer, M. 2009, ApJ, 702, 1268 Google Scholar
Brodie, J. P., Romanowsky, A. J., Strader, J., & Forbes, D. A. 2011, AJ, 142, 199 Google Scholar
Dirsch, B., Richtler, T., Geisler, D., Forte, J. C., Bassino, L. P., & Gieren, W. P. 2003, AJ, 125, 1908 Google Scholar
Evstigneeva, E. A., Drinkwater, M. J., Peng, C. Y., Hilker, M., De Propris, R., et al. 2008 AJ, 136, 461 Google Scholar
Fellhauer, M. & Kroupa, P. 2002, MNRAS, 330, 642 Google Scholar
Forbes, D. A., & Kroupa, P. 2011 PASA, 28, 77 Google Scholar
Forbes, D. A., Pota, V., Usher, C., Starder, J., Romanowsky, A. J., et al. 2013 MNRAS, 435, L6 Google Scholar
Gregg, M. D., Drinkwater, M. J., Evstigneeva, E., Jurek, R., Karick, A. M., Phillipps, S., Bridges, T., Jones, J. B., Bekki, K., & Couch, W. J. 2009 AJ, 137, 498 Google Scholar
Hilker, M., Infante, L., Vieira, G., Kissler-Patig, M., & Richtler, T. 1999, A&AS, 134, 75 Google Scholar
Hilker, M. 2009, in: Roeser, S. (ed.), Reviews in Modern Astronomy: Formation and Evolution of Cosmic Structures, Vol. 21, (Wiley-VCH Verlag GmbH & Co. KGaA), p. 199 Google Scholar
Kissler-Patig, M., Jordán, A., & Bastian, N. 2006 A&A, 448, 1031 Google Scholar
Larsen, S. S., & Brodie, J. P. 2002 AJ, 123, 1488 CrossRefGoogle Scholar
Lotz, J. M., Miller, B. W., & Ferguson, H. C. ApJ, 613, 262 Google Scholar
Lützgendorf, N., Kissler-Patig, M., Neumayer, N., Baumgardt, H., Noyola, E., et al. 2013 A&A, 555, 26 Google Scholar
Mieske, S., Hilker, M., & Infante, L. 2004 A&A, 418, 445 Google Scholar
Mieske, S., Hilker, M., Bomans, D. J., Rey, S.-C., Kim, S., Yoon, S.-J., & Chung, C. 2008 A&A, 489, 1023 Google Scholar
Mieske, S., Hilker, M., Jordán, A., Infante, L., Kissler-Patig, M., et al. 2008 A&A, 487, 921 Google Scholar
Mieske, S., Hilker, M., & Misgeld, I. 2012 A&A, 537, 3 Google Scholar
Mieske, S., Frank, M. J., Baumgardt, H., Lützgendorf, N., Neumayer, N., & Hilker, M. 2013 A&A, 558, 14 Google Scholar
Misgeld, I. & Hilker, M. 2011, MNRAS, 414, 3699 Google Scholar
Norris, M. A., Kannappan, S. J., Forbes, D. A.; Romanowsky, A. J., Brodie, J. P., et al. 2014 MNRAS, 443, 1151 Google Scholar
Pfeffer, J., Griffen, B. F., Baumgardt, H., & Hilker, M. 2014, MNRAS, 444, 3670 Google Scholar
Pfeffer, J., Hilker, M., & Baumgardt, H. 2015 MNRAS, submittedGoogle Scholar
Schuberth, Y., Richtler, T., Hilker, M., Dirsch, B., Bassino, L. P., Romanowsky, A. J., & Infante, L. 2010 A&A, 513, 52 Google Scholar
Seth, A. C., van den Bosch, R., Mieske, S., Baumgardt, H., & Brok, M. Den, , et al. 2014, Nature, 513, 398 Google Scholar
Thomas, D., Maraston, C. & Bender, R. 2003 MNRAS, 339, 897 Google Scholar
Voggel, K., Hilker, M., & Richtler, T. 2015 A&A, acceptedGoogle Scholar
Willman, B., & Strader, J. 2012 AJ, 144, 76 Google Scholar