Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T19:41:58.012Z Has data issue: false hasContentIssue false

Stellar evolution models at the Magellanic Cloud metallicities

Published online by Cambridge University Press:  01 July 2008

Raphael Hirschi
Affiliation:
Astrophysics group, Keele University, Lennard-Jones Lab., Keele, ST5 5BG, UK email: [email protected] IPMU, University of Tokyo, Kashiwa, Chiba 277-8582, Japan
Sylvia Ekström
Affiliation:
Observatoire Astronomique de l'Université de Genève, CH-1290, Sauverny, Switzerland
Cyril Georgy
Affiliation:
Observatoire Astronomique de l'Université de Genève, CH-1290, Sauverny, Switzerland
Georges Meynet
Affiliation:
Observatoire Astronomique de l'Université de Genève, CH-1290, Sauverny, Switzerland
André Maeder
Affiliation:
Observatoire Astronomique de l'Université de Genève, CH-1290, Sauverny, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Magellanic Clouds are great laboratories to study the evolution of stars at two metallicities lower than solar. They provide excellent testbeds for stellar evolution theory and in particular for the impact of metallicity on stellar evolution. It is important to test stellar evolution models at metallicities lower than solar in order to use the models to predict the evolution and properties of the first stars. In these proceedings, after recalling the effects of metallicity, we present stellar evolution models including the effects of rotation at the Magellanic Clouds metallicities. We then compare the models to various observations (ratios of sub-groups of massive stars and supernovae, nitrogen surface enrichment and gamma-ray bursts) and show that the models including the effects of rotation reproduce most of the observational constraints.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Beers, T. C. & Christlieb, N. 2005, ARAA, 43, 531CrossRefGoogle Scholar
Chieffi, A. & Limongi, M. 2004, ApJ, 608, 405CrossRefGoogle Scholar
Eggenberger, P., Maeder, A., & Meynet, G. 2005, A&A, 440, L9Google Scholar
Ekström, S., Meynet, G., Maeder, A., & Barblan, F. 2008, A&A, 478, 467Google Scholar
Eldridge, J. J., Izzard, R. G., & Tout, C. A. 2008, MNRAS, 384, 1109CrossRefGoogle Scholar
Ferrarotti, A. S. & Gail, H.-P. 2006, A&A, 447, 553Google Scholar
Foellmi, C., Moffat, A. F. J., & Guerrero, M. A. 2003a, MNRAS, 338, 360CrossRefGoogle Scholar
Foellmi, C., Moffat, A. F. J., & Guerrero, M. A. 2003b, MNRAS, 338, 1025CrossRefGoogle Scholar
Heger, A., Fryer, C. L., Woosley, S. E., Langer, N., & Hartmann, D. H. 2003, ApJ, 591, 288CrossRefGoogle Scholar
Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ, 626, 350CrossRefGoogle Scholar
Hirschi, R., Meynet, G., & Maeder, A. 2005, A&A, 443, 581Google Scholar
Höfner, S. & Andersen, A. C. 2007, A&A, 465, L39Google Scholar
Hunter, I., Brott, I., Lennon, D. J., et al. 2008, ApJ, 676, L29CrossRefGoogle Scholar
Kudritzki, R.-P. 2002, ApJ, 577, 389CrossRefGoogle Scholar
Kudritzki, R.-P. & Puls, J. 2000, ARAA, 38, 613CrossRefGoogle Scholar
Maeder, A., Meynet, G., Ekström, S., & Georgy, C. 2008, in Comm. in Asteroseismology, Contribution to the Proceedings of the 38th LIAC, in press (arXiv.0810.0657)Google Scholar
Martayan, C., Floquet, M., Hubert, A. M., et al. 2007, A&A, 472, 577Google Scholar
Meynet, G. & Maeder, A. 2002, A&A, 390, 561Google Scholar
Meynet, G. & Maeder, A. 2005, A&A, 429, 581Google Scholar
Meynet, G., Maeder, A., Schaller, G., Schaerer, D., & Charbonnel, C. 1994, A&AS, 103, 97Google Scholar
Modjaz, M., Kewley, L., Kirshner, R. P., et al. 2008, AJ, 135, 1136CrossRefGoogle Scholar
Mokiem, M. R., de Koter, A., Vink, J. S., et al. 2007, A&A, 473, 603Google Scholar
Mowlavi, N., Meynet, G., Maeder, A., Schaerer, D., & Charbonnel, C. 1998, A&A, 335, 573Google Scholar
Nieuwenhuijzen, H. & de Jager, C. 1990, A&A, 231, 134Google Scholar
Prieto, J. L., Stanek, K. Z., & Beacom, J. F. 2008, ApJ, 673, 999CrossRefGoogle Scholar
Prantzos, N. & Boissier, S. 2003, A&A, 406, 259Google Scholar
Pustilnik, S. A., Tepliakova, A. L., Kniazev, A. Y., & Burenkov, A. N. 2008, MNRAS, 388, L24CrossRefGoogle Scholar
Smith, N., Gehrz, R. D., Hinz, P. M., et al. 2003, AJ, 125, 1458CrossRefGoogle Scholar
Spruit, H. C. 2002, A&A, 381, 923Google Scholar
van Loon, J. Th. 2000, A&A, 354, 125Google Scholar
van Loon, J. Th. 2006, in Lamers, H. J. G. L. M., Langer, N., Nugis, T., & Annuk, K. (eds.), Stellar Evolution at Low Metallicity: Mass Loss, Explosions, Cosmology, ASP Conf. Ser. 353, p. 211Google Scholar
van Loon, J. Th., Cioni, M.-R. L., Zijlstra, A. A., & Loup, C. 2005, A&A, 438, 273Google Scholar
Vink, J. S. & de Koter, A. 2005, A&A, 442, 587Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2000, A&A, 362, 295Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574Google Scholar
Woosley, S. E. & Bloom, J. S. 2006, ARAA, 44, 507CrossRefGoogle Scholar
Woosley, S. E. & Heger, A. 2006, ApJ, 637, 914CrossRefGoogle Scholar
Yoon, S.-C., Langer, N., & Norman, C. 2006, A&A, 460, 199Google Scholar