Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T00:44:30.210Z Has data issue: false hasContentIssue false

Stellar Evolution at Low Metallicity

Published online by Cambridge University Press:  01 December 2007

Raphael Hirschi
Affiliation:
Astrophysics group, Keele University, Lennard-Jones Lab., Keele, ST5 5BG, UK email: [email protected]
Cristina Chiappini
Affiliation:
Observatoire Astronomique de l'Université de Genève, CH-1290, Sauverny, Switzerland Osservatorio Astronomico di Trieste, Via G. B. Tiepolo 11, I - 34131 Trieste, Italia
Georges Meynet
Affiliation:
Observatoire Astronomique de l'Université de Genève, CH-1290, Sauverny, Switzerland
André Maeder
Affiliation:
Observatoire Astronomique de l'Université de Genève, CH-1290, Sauverny, Switzerland
Sylvia Ekström
Affiliation:
Observatoire Astronomique de l'Université de Genève, CH-1290, Sauverny, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive stars played a key role in the early evolution of the Universe. They formed with the first halos and started the re-ionisation. It is therefore very important to understand their evolution. In this review, we first recall the effect of metallicity (Z) on the evolution of massive stars. We then describe the strong impact of rotation induced mixing and mass loss at very low Z. The strong mixing leads to a significant production of primary 14N, 13C and 22Ne. Mass loss during the red supergiant stage allows the production of Wolf-Rayet stars, type Ib,c supernovae and possibly gamma-ray bursts (GRBs) down to almost Z = 0 for stars more massive than 60 M. Galactic chemical evolution models calculated with models of rotating stars better reproduce the early evolution of N/O, C/O and 12C/13C. Finally, the impact of magnetic fields is discussed in the context of GRBs.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Arnett, D. 1996, in: Morrison, H. L. & Sarajedini, A. (eds.), Formation of the Galactic Halo. . .Inside and Out, (San Francisco: ASP) ASP Conf. Ser., 92, 337Google Scholar
Asplund, M. 2005, ARA&A, 43, 481Google Scholar
Beers, T. C. & Christlieb, N. 2005, ARA&A, 43, 531Google Scholar
Bromm, V. & Larson, R. B. 2004, ARA&A, 42, 79Google Scholar
Bromm, V. & Loeb, A. 2003, Nature, 425, 812CrossRefGoogle Scholar
Carr, B. J., Bond, J. R., & Arnett, W. D. 1984, ApJ, 277, 445CrossRefGoogle Scholar
Chiappini, C., Matteucci, F., & Ballero, S. K. 2005, A&A, 437, 429Google Scholar
Chiappini, C., Hirschi, R., Matteucci, F., et al. 2006a, in: Nuclei in the Cosmos IX, CERN, PoS(NIC-IX)080Google Scholar
Chiappini, C., Hirschi, R., Meynet, G., et al. 2006b A&A, 449, L27Google Scholar
Chiappini, C., Ekström, S., Meynet, G., et al. 2008, A&A, 479, L9Google Scholar
Chieffi, A. & Limongi, M. 2004, ApJ, 608, 405CrossRefGoogle Scholar
Chiosi, C. 1983, Memorie della Societa Astronomica Italiana, 54, 251Google Scholar
de Mink, S. E., Pols, O. R., & Yoon, S. C. 2008, in: Abel, T., Heger, A. & O'Shea, B. (eds.), First Stars III (New York: AIP), AIP Conf Proc., in press (arXiv0710.1010)Google Scholar
Eggenberger, P., Maeder, A., & Meynet, G. 2005, A&A, 440, L9Google Scholar
Ekström, S., Meynet, G., & Maeder, A. 2006, in: Lamers, H. J.G. L.M., Langer, N., Nugis, T., & Annuk, K. (eds.), Stellar Evolution at Low Metallicity: Mass Loss, Explosions, Cosmology (San Francisco: ASP) ASP Conf. Ser., 353, 141Google Scholar
Ekström, S., Meynet, G., & Maeder, A. 2008, in: Abel, T., Heger, A. & O'Shea, B. (eds.), First Stars III, (New York: AIP), AIP Conf. Proc., in press (arXiv:0709.0202)Google Scholar
El Eid, M. F., Fricke, K. J., & Ober, W. W. 1983, A&A, 119, 54Google Scholar
Ferrarotti, A. S. & Gail, H.-P. 2006, A&A, 447, 553Google Scholar
Frebel, A., Christlieb, N., Norris, J. E., et al. 2006, ApJ, 638, L17CrossRefGoogle Scholar
Fukuda, I. 1982, PASP, 94, 271CrossRefGoogle Scholar
Gil-Pons, P., Suda, T., Fujimoto, M. Y., & García-Berro, E. 2005, A&A, 433, 1037Google Scholar
Heger, A. & Langer, N. 2000, ApJ, 544, 1016CrossRefGoogle Scholar
Heger, A. & Woosley, S. E. 2002, ApJ, 567, 532CrossRefGoogle Scholar
Heger, A., Fryer, C. L., Woosley, S. E., et al. 2003, ApJ, 591, 288CrossRefGoogle Scholar
Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ, 626, 350CrossRefGoogle Scholar
Herwig, F. 2004, ApJS, 155, 651CrossRefGoogle Scholar
Hirschi, R. 2005, in: Hill, V., François, P. & Primas, F. (eds.), From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution (Cambridge: Cambridge University Press), Proc. IAU Symp, 228, 331Google Scholar
Hirschi, R. 2007, A&A, 461, 571Google Scholar
Hirschi, R., Meynet, G., & Maeder, A. 2005, A&A, 443, 581Google Scholar
Höfner, S. & Andersen, A. C. 2007, A&A, 465, L39Google Scholar
Iwamoto, N., Umeda, H., Tominaga, N., et al. 2005, Science, 309, 451CrossRefGoogle Scholar
Kudritzki, R. P. 2002, ApJ, 577, 389CrossRefGoogle Scholar
Kudritzki, R.-P. & Puls, J. 2000, ARA&A, 38, 613Google Scholar
Langer, N., Norman, C. A., de Koter, A., et al. 2007, A&A, 475, L19Google Scholar
Limongi, M. & Chieffi, A. 2005, in: Hill, V., François, P. & Primas, F. (eds.), From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution (Cambridge: Cambridge University Press), Proc. IAU Symp, 228, 303Google Scholar
Limongi, M., Chieffi, A., & Bonifacio, P. 2003, ApJ, 594, L123CrossRefGoogle Scholar
Maeder, A., Grebel, E. K., & Mermilliod, J.-C. 1999, A&A, 346, 459Google Scholar
Maeder, A. & Meynet, G. 2005, A&A, 440, 1041Google Scholar
Marigo, P. 2002, A&A, 387, 507Google Scholar
Meynet, G. & Maeder, A. 2000, A&A, 361, 101Google Scholar
Meynet, G. & Maeder, A. 2002, A&A, 390, 561Google Scholar
Meynet, G. & Maeder, A. 2005, A&A, 429, 581Google Scholar
Meynet, G., Ekström, S., & Maeder, A. 2006, A&A, 447, 623Google Scholar
Mokiem, M. R., de Koter, A., Vink, J. S., et al. 2007, A&A, 473, 603Google Scholar
Nakamura, F. & Umemura, M. 2001, ApJ, 548, 19CrossRefGoogle Scholar
Nieuwenhuijzen, H., & de Jager, C. 1990, A&A, 231, 134Google Scholar
Picardi, I., Chieffi, A., Limongi, M., et al. 2004, ApJ, 609, 1035CrossRefGoogle Scholar
Scannapieco, E., Madau, P., Woosley, S., et al. 2005, ApJ, 633, 1031CrossRefGoogle Scholar
Schneider, R., Omukai, K., Inoue, A. K., & Ferrara, A. 2006, MNRAS, 369, 1437CrossRefGoogle Scholar
Siess, L., Livio, M., & Lattanzio, J. 2002, ApJ, 570, 329CrossRefGoogle Scholar
Smith, N., Gehrz, R. D., Hinz, P. M., et al. 2003, AJ, 125, 1458CrossRefGoogle Scholar
Smith, N., Li, W., Foley, R. J., et al. 2007, ApJ, 666, 1116CrossRefGoogle Scholar
Spite, M., Cayrel, R., Plez, B., et al. 2005, A&A, 430, 655Google Scholar
Spite, M., Cayrel, R., Hill, V., et al. 2006, A&A, 455, 291Google Scholar
Spruit, H. C. 2002, A&A, 381, 923Google Scholar
Suda, T., Aikawa, M., Machida, M. N., et al. 2004, ApJ, 611, 476CrossRefGoogle Scholar
Tominaga, N., Umeda, H., & Nomoto, K. 2007, ApJ, 660, 516CrossRefGoogle Scholar
Tornatore, L., Ferrara, A., & Schneider, R. 2007, MNRAS, 382, 945CrossRefGoogle Scholar
Umeda, H. & Nomoto, K. 2005, ApJ, 619, 427CrossRefGoogle Scholar
van Loon, J. T. 2000, A&A, 354, 125Google Scholar
van Loon, J. T. 2006, in: Lamers, H. J.G. L.M., Langer, N., Nugis, T., & Annuk, K. (eds.), Stellar Evolution at Low Metallicity: Mass Loss, Explosions, Cosmology (San Francisco: ASP), ASP Conf. Ser., 353, 211Google Scholar
van Loon, J. T., Cioni, M.-R. L., Zijlstra, A. A., & Loup, C. 2005, A&A, 438, 273Google Scholar
Vink, J. S. & de Koter, A. 2005, A&A, 442, 587Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J.G. L.M. 2000, A&A, 362, 295Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J.G. L.M. 2001, A&A, 369, 574Google Scholar
Weiss, A., Schlattl, H., Salaris, M., & Cassisi, S. 2004, A&A, 422, 217Google Scholar
Woosley, S. E. & Heger, A. 2006, ApJ, 637, 914CrossRefGoogle Scholar
Woosley, S. E., Blinnikov, S., & Heger, A. 2007, Nature, 450, 390CrossRefGoogle Scholar
Yoon, S.-C., Langer, N., & Norman, C. 2006, A&A, 460, 199Google Scholar