Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T23:32:00.409Z Has data issue: false hasContentIssue false

Statistical study of magnetic reconnection in accretion disks systems around HMXBs

Published online by Cambridge University Press:  30 December 2019

Luís H.S. Kadowaki
Affiliation:
Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas 1226 Matão Street São Paulo, 05508-090, Brasil email: [email protected]
Elisabete M. de Gouveia Dal Pino
Affiliation:
Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas 1226 Matão Street São Paulo, 05508-090, Brasil email: [email protected]
James M. Stone
Affiliation:
Department of Astrophysical Sciences, Peyton Hall, Princeton University Princeton, NJ 08544, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Highly magnetized accretion disks are present in high-mass X-ray binaries (HMXBs). A potential mechanism to explain the transition between the High/Soft and Low/Hard states observed in HMXBs can be attributed to fast magnetic reconnection induced in the turbulent corona. In this work, we present results of global general relativistic MHD (GRMHD) simulations of accretion disks around black holes that show that fast reconnection events can naturally arise in the coronal region of these systems in presence of turbulence triggered by MHD instabilities, indicating that such events can be a potential mechanism to explain the transient non-thermal emission in HMXBs. To find the zones of fast reconnection, we have employed an algorithm to identify the presence of current sheets in the turbulent regions and computed statistically the magnetic reconnection rates in these locations obtaining average reconnection rates consistent with the predictions of the theory of turbulence-induced fast reconnection.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Abramowicz, M. A., & Fragile, P. C. 2013, Living Reviews in Relativity, 16, 1 CrossRefGoogle Scholar
Albert, J., Aliu, E., Anderhub, H., et al. 2007, ApJL, 665, L51 CrossRefGoogle Scholar
Aleksić, J., et al. 2010b, ApJ, 721, 84 CrossRefGoogle Scholar
Balbus, S. A., & Hawley, J. F. 1991, ApJ, 376, 214 CrossRefGoogle Scholar
Balbus, S. A., & Hawley, J. F. 1998, Reviews of Modern Physics, 70, 1 CrossRefGoogle Scholar
Ball, D., Özel, F., Psaltis, D., Chan, C.-K., & Sironi, L. 2018, ApJ, 853, 184 CrossRefGoogle Scholar
Belloni, T., Homan, J., Casella, P., et al. 2005, A&A, 440, 207 Google Scholar
Chandrasekhar, S. 1960, Proceedings of the National Academy of Science, 46, 253 CrossRefGoogle Scholar
de Gouveia Dal Pino, E.M., & Lazarian, A. 2005, A&A, 441, 845 Google Scholar
de Gouveia Dal Pino, E.M., Piovezan, P.P., & Kadowaki, L.H.S. 2010a, A&A, 518, A5 Google Scholar
del Valle, M. V., de Gouveia Dal Pino, E. M., & Kowal, G. 2016, MNRAS, 463, 4331 CrossRefGoogle Scholar
Esin, A. A., McClintock, J. E., & Narayan, R. 1997, ApJ, 489, 865 CrossRefGoogle Scholar
Esin, A. A., Narayan, R., Cui, W., Grove, J. E., & Zhang, S.-N. 1998, ApJ, 505, 854 CrossRefGoogle Scholar
Esin, A. A., McClintock, J. E., Drake, J. J., et al. 2001, Apj, 555, 483 CrossRefGoogle Scholar
Fender, R. P., Belloni, T. M., & Gallo, E. 2004, MNRAS, 355, 1105 CrossRefGoogle Scholar
Fishbone, L. G., & Moncrief, V. 1976, ApJ, 207, 962 CrossRefGoogle Scholar
Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1995, ApJ, 440, 742 CrossRefGoogle Scholar
Kadowaki, L. H. S., de Gouveia Dal Pino, E. M., & Singh, C. B. 2015, ApJ, 802, 113 CrossRefGoogle Scholar
Kadowaki, L. H. S., de Gouveia Dal Pino, E. M., & Stone, J. M. 2018, ApJ, 864, 52 CrossRefGoogle Scholar
Khiali, B., de Gouveia Dal Pino, E. M., & del Valle, M. V. 2015, MNRAS, 449, 34 CrossRefGoogle Scholar
Kowal, G., Lazarian, A., Vishniac, E. T., Otmianowska-Mazur, K., 2009, ApJ, 700, 63 Kowal, G., de Gouveia Dal Pino, E.M., & Lazarian, A. 2012, Physical Review Letters, 108, 241102 CrossRefGoogle Scholar
Kylafis, N. D., & Belloni, T. M. 2015, A&A, 574, A133 Google Scholar
Lazarian, A., & Vishniac, E., 1999, ApJ, 517, 700 CrossRefGoogle Scholar
Narayan, R., & McClintock, J. E. 2008, New Astronomy Reviews, 51, 733 CrossRefGoogle Scholar
Pringle, J. E. 1981, ARA&A, 19, 137 CrossRefGoogle Scholar
Ramirez-Rodriguez, J., de Gouveia Dal Pino, E.M., & Alves-Batista, R. 2018, these ProceedingsGoogle Scholar
Remillard, R. A., & McClintock, J. E. 2006, ARA&A, 44, 49 CrossRefGoogle Scholar
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337 Google Scholar
Singh, C. B., de Gouveia Dal Pino, E.M., & Kadowaki, L. H. S. 2015, ApJL, 799, L20 CrossRefGoogle Scholar
White, C. J., Stone, J. M., & Gammie, C. F. 2016, ApJS, 225, 22 CrossRefGoogle Scholar
Zhdankin, V., Uzdensky, D. A., Perez, J. C., & Boldyrev, S. 2013, ApJ, 771, 124.CrossRefGoogle Scholar