Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T01:08:33.545Z Has data issue: false hasContentIssue false

Statistical challenges in weak lensing cosmology

Published online by Cambridge University Press:  01 July 2015

Masahiro Takada*
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study The University of Tokyo, Chiba 277-8583, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cosmological weak lensing is the powerful probe of cosmology. Here we address one of the most fundamental, statistical questions inherent in weak lensing cosmology: whether or not we can recover the initial Gaussian information content of large-scale structure by combining the weak lensing observables, here focused on the weak lensing power spectrum and bispectrum. To address this question we fully take into account correlations between the power spectra of different multipoles and the bispectra of different triangle configurations, measured from a finite area survey. In particular we show that super-survey modes whose length scale is larger than or comparable with the survey size cause significant sample variance in the weak lensing correlations via the mode-coupling with sub-survey modes due to nonlinear gravitational clustering – the so-called super-sample variance. In this paper we discuss the origin of the super-sample variance and then study the information content inherent in the weak lensing correlation functions up to three-point level.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Hamilton, A. J. S., Rimes, C. D., & Scoccimarro, R. 2006, MNRAS, 371, 1188Google Scholar
Heymans, C., et al. 2013, MNRAS, 432, 2433CrossRefGoogle Scholar
Hu, W. & Kravtsov, A. 2003, ApJ, 584, 702CrossRefGoogle Scholar
Kayo, I. & Takada, M. 2013, arXiv:1306.4684Google Scholar
Kayo, I., Takada, M., & Jain, B. 2013, MNRAS, 429, 344Google Scholar
Li, Y., Hu, W., & Takada, M. 2014, Phys. Rev. D, 89, 083519Google Scholar
Li, Y., Hu, W., & Takada, M. 2014b, in preparationGoogle Scholar
More, S., et al. 2014, arXiv:1407.1856Google Scholar
Oguri, M. & Takada, M. 2011, Phys. Rev. D, 83, 023008CrossRefGoogle Scholar
Sato, M., Hamana, T., Takahashi, R., Takada, M., et al. 2009, ApJ, 701, 945Google Scholar
Seo, H.-J., Sato, M., Dodelson, S., Jain, B., & Takada, M. 2011, ApJ Letters, 729, 11Google Scholar
Schaan, E., Takada, M., & Spergel, D. N. 2014, arXiv:1406.3330Google Scholar
Takada, M. 2010, AIP Conference Proceedings, 1279, 120CrossRefGoogle Scholar
Takada, M. & Bridle, S. 2007, New Journal of Physcis, 9, 446Google Scholar
Takada, M. & Hu, W. 2013, Phys. Rev. D, 87, 123504CrossRefGoogle Scholar
Takada, M. & Jain, B. 2004, MNRAS, 348, 897Google Scholar
Takada, M. & Jain, B. 2009, MNRAS, 395, 2065Google Scholar
Takada, M. & Spergel, D. N. 2014, MNRAS, 441, 2456CrossRefGoogle Scholar
Takada, M., Ellis, R. S., Chiba, M., Greene, J. E., et al. 2014, Publ. Astron. Soc. Japan, 66, R1Google Scholar
Takahashi, R., Soma, S., Takada, M., & Kayo, I. 2014, arXiv:1405.2666Google Scholar