Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T18:17:12.673Z Has data issue: false hasContentIssue false

Statistical Analysis of Extreme Electron Fluxes in the Radiation Belts

Published online by Cambridge University Press:  24 July 2018

Vanina Lanabere
Affiliation:
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias de la Atmósfera y los Océanos, Buenos Aires, Argentina email: [email protected]
Sergio Dasso
Affiliation:
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias de la Atmósfera y los Océanos, Buenos Aires, Argentina email: [email protected] Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina CONICET - Universidad de Buenos Aires, Instituto de Astronomía y Física del Espacio, Buenos Aires, Argentina
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The main aim of this work is to study the frequency of extreme Space Weather events, in particular to analyse the tails of the daily averaged electron fluxes distribution function for different channels of energy between 0.249–1.192 MeV measured at ~ 600 km of altitude with the particle detector ICARE-NG/CARMEN-1 on board argentinian polar satellite SAC-D. An extreme value theory was applied to estimate the maximum values of the electron flux in the outer radiation belt for different return levels. We found that the cumulative distribution function of the extreme electron fluxes presents a finite upper limit in (1) the core of the outer radiation belt for the lower energy channels and (2) in the inner edge of the outer radiation belt for energy channels larger than 0.653 keV. The results presented in this work are important to characterise Space Weather conditions.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Koons, H. C. 2001, J. Geophys. Res., A106, 2156Google Scholar
Koons, H. C. & Fennell, J. F. 2006, Radio Sci. Bul. Int. Union Radio SCi. (URSI), 316, 2741Google Scholar
Lugaz, N., Farrugia, C. J., Huang, C. L., Winslow, R. M., Spence, H. E. & Schwadron, N. A. 2016, Nature Communications, 7Google Scholar
Meredith, N. P., Horne, R. B, Isles, J. D. & Rodriguez, J. V. 2015, Space Weather, 13, 170CrossRefGoogle Scholar
Meredith, N. P., Horne, R. B, Isles, J. D. & Green, J. C. 2016, Space Weather, 14, 136Google Scholar
O’Brien, T. P., Fennell, J. F., Roeder, J. L. & Reeves, G. D. 2007, Space Weather, 5Google Scholar
Picklands, J. 1975, Ann. Stat., 3Google Scholar
Prölss, J. 2012, Springer Science & Business MediaGoogle Scholar
Wrenn, G. L., Rodgers, D. J. & Ryden, K. A. 2002, Ann. Geophys., 20, 953Google Scholar
Coles, S. 2001, Springer Science & Business MediaGoogle Scholar