Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T19:22:27.049Z Has data issue: false hasContentIssue false

State-of-the-art of kinematic modeling the solar cycle

Published online by Cambridge University Press:  27 November 2018

Jie Jiang*
Affiliation:
School of Space and Environment, Beihang University, Beijing, China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The kinematic modeling of the solar convection zone remains the workhorse of the solar dynamo to understand the solar cycle. During the past several years, the major progress in understanding the solar cycle using kinematic models is as follows. (1). The Babcock-Leighton (BL) mechanism was confirmed to be at the essence of the solar cycle. (2). The scatter of sunspot tilt angles is identified as a major cause of solar cycle irregularities. (3). The important roles of the magnetic pumping in the dynamo process are recognized. (4). Some 3D kinematic BL type dynamo models have been developed. As a key part of the solar dynamo loop, the surface observable part of the BL mechanism makes the physics-based solar cycle prediction feasible. Including the effects of the tilt scatter on the polar field generation, the possible strength of the subsequent cycle can be predicted when a cycle starts for a few years.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Babcock, H. W., 1969, ApJ, 133, 572Google Scholar
Brun, A. S., Strugarek, A., Varela, J, et al. 2017, ApJ, 836, 192Google Scholar
Cameron, R. H., Schmitt, D., Jiang, J., & Işik, E., 2012, A&A, 542, 127Google Scholar
Cameron, R. H. & Schüssler, M., 2015, Science, 347, 1333Google Scholar
Cameron, R. H., Jiang, J., & Schüssler, M., 2016, ApJL, 823, L22Google Scholar
Cameron, R. H. & Schüssler, M., 2017a, A&A, 599, 52Google Scholar
Cameron, R. H. & Schüssler, M., 2017b, ApJ, 843, 111Google Scholar
Choudhuri, A. R., Schussler, M., & Dikpati, M., 1995, A&A, 303, L29Google Scholar
Choudhuri, A. R. & Hazra, G., 2016, Advances in Space Research, 58, 1560Google Scholar
Hathaway, D. H. & Upton, L. A., 2016, Journal of Geophysical Research: Space Physics, 121, 11Google Scholar
Hazra, G., Choudhuri, A. R., & Miesch, M. S., 2017, ApJ, 835, 1Google Scholar
Hotta, H., Rempel, M., & Yokoyama, T., 2016, Science, 351, 1427Google Scholar
Jiang, J., Cameron, R. H., Schmitt, D., & Işik, E., 2013, A&A, 553, 128Google Scholar
Jiang, J., Cameron, R. H., & Schüssler, M., 2014a, ApJ, 791, 5Google Scholar
Jiang, J., Hathaway, D. H., Cameron, R. H., Solanki, S. K., Gizon, L., & Upton, L., 2014b, Space Science Reviews, 186, 1Google Scholar
Jiang, J., Cameron, R. H., & Schüssler, M., 2015, ApJL, 808, L28Google Scholar
Jiang, J. & Cao, J. 2017, Journal of Atmospheric and Solar-Terrestrial Physics, doi:10.1016/j.jastp.2017.06.019Google Scholar
Karak, B. B., Jiang, J., Miesch, M. S., Charbonneau, P., & Choudhuri, A. R., 2014, Space Science Reviews, 186, 1Google Scholar
Karak, B. B., Käpylä, P. J., Käpylä, M. J., Brandenburg, A., Olspert, N., & Pelt, J., 2015, A&A, 576, A26Google Scholar
Karak, Bidya Binay, Cameron, R., 2016, ApJ, 832, 1Google Scholar
Karak, B. B. & Miesch, M., 2017, ApJ, 847, 1Google Scholar
Karak, B. B., Miesch, M., & Bekki, Y., 2018, Physics of Fluids, 30, 046602Google Scholar
Käpylä, P. J., Käpylä, M. J., Olspert, N., Warnecke, J., & Brandenburg, A., 2017, A&A, 30, 490Google Scholar
Kitchatinov, L. L. & Nepomnyashchikh, A. A., 2017, Astronomy Letters, 43, 5Google Scholar
Leighton, R. B., 1969, ApJ, 156, 1LGoogle Scholar
Lemerle, Alexandre, Charbonneau, P., 2017, ApJ, 834, 2Google Scholar
Miesch, Mark S. & Dikpati, M., 2014, ApJL, 785, 1Google Scholar
Nagy, M., Lemerle, A., Labonville, F., Petrovay, K., & Charbonneau, P., 2017, Solar Physics, 292, 11Google Scholar
Nelson, N. J., Brown, B. P., Brun, A. S., Miesch, M. S., & Toomre, J., 2013, ApJ, 762, 2Google Scholar
Olemskoy, S. V. & Kitchatinov, L. L., 2013a, ApJ, 777, 71Google Scholar
Olemskoy, S. V., Choudhuri, A. R., & Kitchatinov, L. L., 2013b, Astronomy Reports, 57, 458Google Scholar
Parker, E. N., 1955, ApJ, 122, 293Google Scholar
Strugarek, A., Beaudoin, P., Charbonneau, P., Brun, A. S., & do Nascimento, J.-D., 2017, Science, 357, 185Google Scholar
Wang, Y.-M., Sheeley, N. R. Jr, & Nash, A. G., 1991, ApJ, 383, 431Google Scholar
Weber, M. A., Fan, Y., & Miesch, M. S., 2011, ApJ, 741, 11Google Scholar
Wright, N. J. & Drake, J. J., 2016, Nature, 535, 7613Google Scholar
Yeates, A. R. & Muñoz-Jaramillo, A., 2013, Monthly Notices of the Royal Astronomical Society, 436, 4Google Scholar
Zhao, J., 2016, Advances in Space Research, 58, 8Google Scholar