Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-06T02:56:00.988Z Has data issue: false hasContentIssue false

Star-formation efficiency at 600Myr of cosmic time

Published online by Cambridge University Press:  04 June 2020

Mauro Stefanon
Affiliation:
Leiden Observatory, University of Leiden, Niels Bohrweg, 2 - 2333CA Leiden - The Netherlands email: [email protected]
Ivo Labbé
Affiliation:
Centre for Astrophysics and SuperComputing, Swinburne, University of Technology, Hawthorn, Victoria, 3122, Australia
Rychard Bouwens
Affiliation:
Leiden Observatory, University of Leiden, Niels Bohrweg, 2 - 2333CA Leiden - The Netherlands email: [email protected]
Pascal Oesch
Affiliation:
Observatoire de Genève, 51 Ch. des Maillettes, 1290 Versoix, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Current observations suggest an accelerated evolution of the cosmic star formation rate density for 8 < z < 10, indicating that galaxy assembly experienced an extremely intense phase during the first ∼600Myr years of cosmic time. We performed a systematic search of ultrabright star-forming galaxies at z ∼ 8 over the COSMOS/UltraVISTA survey, identifying 16 candidate Lyman-break galaxies. The still large uncertainties on the associated volume density do not yet allow us to ascertain whether a different star-formation efficiency (SFE) existed at early cosmic epochs. Leveraging the deepest Spitzer/IRAC data available from the GREATS program over the CANDELS/GOODS fields, we also constructed stacked SEDs of sub- L* LBGs at z ∼ 8. We find extreme nebular line emission (EW0 (Hα) ∼ 1000Å), high specific star-formation rates (∼10/Gyr) and indication of an inverse Balmer break. These results point toward very young ages (<100 Myr), and, combined with measurements at lower redshifts, that the SFE evolved only marginally during the first ∼1.5Gyr of cosmic history.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Anders, P. & Fritze-v. Alvensleben, U. 2003, A&A, 401, 1063Google Scholar
Behroozi, P. & Silk, J. 2018, MNRAS, 477, 538210.1093/mnras/sty945CrossRefGoogle Scholar
Bernard, S. R., Carrasco, D., Trenti, M., et al. 2016, ApJ, 827, 7610.3847/0004-637X/827/1/76CrossRefGoogle Scholar
Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2015, ApJ, 803, 3410.1088/0004-637X/803/1/34CrossRefGoogle Scholar
Bouwens, R. J., Oesch, P. A., Labbé, I., et al. 2016, ApJ, 830, 6710.3847/0004-637X/830/2/67CrossRefGoogle Scholar
Bowler, R. A. A., Dunlop, J. S., McLure, R. J., & McLeod, D. J. 2017, MNRAS, 466, 361210.1093/mnras/stw3296CrossRefGoogle Scholar
Bowler, R. A. A., Dunlop, J. S., McLure, R. J., et al. 2012, MNRAS, 426, 277210.1111/j.1365-2966.2012.21904.xCrossRefGoogle Scholar
Bowler, R. A. A., Dunlop, J. S., McLure, R. J., et al. 2014, MNRAS, 440, 281010.1093/mnras/stu449CrossRefGoogle Scholar
Bowler, R. A. A., Dunlop, J. S., McLure, R. J., et al. 2015, MNRAS, 452, 181710.1093/mnras/stv1403CrossRefGoogle Scholar
Calvi, V., Trenti, M., Stiavelli, M., et al. 2016, ApJ, 817, 12010.3847/0004-637X/817/2/120CrossRefGoogle Scholar
Castellano, M., Pentericci, L., Fontana, A., et al. 2017, ApJ, 839, 7310.3847/1538-4357/aa696eCrossRefGoogle Scholar
Davidzon, I., Ilbert, O., Faisst, A. L., et al. 2018, ApJ, 852, 10710.3847/1538-4357/aaa19eCrossRefGoogle Scholar
de Barros, S., Oesch, P. A., Labbé, I., et al. 2018 - submitted, ApJGoogle Scholar
Dekel, A., Zolotov, A., Tweed, D., et al. 2013, MNRAS, 435, 99910.1093/mnras/stt1338CrossRefGoogle Scholar
Duncan, K., Conselice, C. J., Mortlock, A., et al. 2014, MNRAS, 444, 296010.1093/mnras/stu1622CrossRefGoogle Scholar
Ellis, R. S., McLure, R. J., Dunlop, J. S., et al. 2013, ApJL, 763, L710.1088/2041-8205/763/1/L7CrossRefGoogle Scholar
Faisst, A. L., Capak, P., Hsieh, B. C., et al. 2016, ApJ, 821, 12210.3847/0004-637X/821/2/122CrossRefGoogle Scholar
Finkelstein, S. L., Ryan, R. E., Papovich, C., et al. 2015a, ApJ, 810, 7110.1088/0004-637X/810/1/71CrossRefGoogle Scholar
Finkelstein, S. L., Song, M., Behroozi, P., et al. 2015b, ApJ, 814, 9510.1088/0004-637X/814/2/95CrossRefGoogle Scholar
Finlator, K., Oppenheimer, B. D., & Davé, R. 2011, MNRAS, 410, 1703Google Scholar
González, V., Bouwens, R., Illingworth, G., et al. 2014, ApJ, 781, 3410.1088/0004-637X/781/1/34CrossRefGoogle Scholar
Harikane, Y., Ouchi, M., Ono, Y., et al. 2016, ApJ, 821, 12310.3847/0004-637X/821/2/123CrossRefGoogle Scholar
Harikane, Y., Ouchi, M., Ono, Y., et al. 2018, PASJ, 70, S1110.1093/pasj/psx097CrossRefGoogle Scholar
Ishigaki, M., Kawamata, R., Ouchi, M., et al. 2018, ApJ, 854, 7310.3847/1538-4357/aaa544CrossRefGoogle Scholar
Labbé, I., Oesch, P. A., Bouwens, R. J., et al. 2013, ApJL, 777, L1910.1088/2041-8205/777/2/L19CrossRefGoogle Scholar
Livermore, R. C., Trenti, M., Bradley, L. D., et al. 2018, ApJL, 861, L1710.3847/2041-8213/aacd16CrossRefGoogle Scholar
Lotz, J. M., Koekemoer, A., Coe, D., et al. 2017, ApJ, 837, 9710.3847/1538-4357/837/1/97CrossRefGoogle Scholar
Mashian, N., Oesch, P. A., & Loeb, A. 2016, MNRAS, 455, 210110.1093/mnras/stv2469CrossRefGoogle Scholar
Mason, C. A., Trenti, M., & Treu, T. 2015, ApJ, 813, 2110.1088/0004-637X/813/1/21CrossRefGoogle Scholar
McLeod, D. J., McLure, R. J., & Dunlop, J. S. 2016, MNRAS, 459, 381210.1093/mnras/stw904CrossRefGoogle Scholar
McLeod, D. J., McLure, R. J., Dunlop, J. S., et al. 2015, MNRAS, 450, 303210.1093/mnras/stv780CrossRefGoogle Scholar
Morishita, T., Trenti, M., Stiavelli, M., et al. 2018, ApJ, 867, 15010.3847/1538-4357/aae68cCrossRefGoogle Scholar
Oesch, P. A., Labbé, I., Bouwens, R. J., et al. 2013, ApJ, 772, 13610.1088/0004-637X/772/2/136CrossRefGoogle Scholar
Oesch, P. A., Bouwens, R. J., Illingworth, G. D., et al. 2014, ApJ, 786, 10810.1088/0004-637X/786/2/108CrossRefGoogle Scholar
Oesch, P. A., Brammer, G., van Dokkum, P. G., et al. 2016, ApJ, 819, 12910.3847/0004-637X/819/2/129CrossRefGoogle Scholar
Oesch, P. A., Bouwens, R. J., Illingworth, G. D., et al. 2018, ApJ, 855, 10510.3847/1538-4357/aab03fCrossRefGoogle Scholar
Salmon, B., Papovich, C., Finkelstein, S. L., et al. 2015, ApJ, 799, 18310.1088/0004-637X/799/2/183CrossRefGoogle Scholar
Schenker, M. A., Robertson, B. E., Ellis, R. S., et al. 2013, ApJ, 768, 19610.1088/0004-637X/768/2/196CrossRefGoogle Scholar
Schmidt, K. B., Treu, T., Trenti, M., et al. 2014, ApJ, 786, 5710.1088/0004-637X/786/1/57CrossRefGoogle Scholar
Smit, R., Bouwens, R. J., Labbé, I., et al. 2014, ApJ, 784, 5810.1088/0004-637X/784/1/58CrossRefGoogle Scholar
Song, M., Finkelstein, S. L., Ashby, M. L. N., et al. 2016, ApJ, 825, 510.3847/0004-637X/825/1/5CrossRefGoogle Scholar
Stark, D. P., Schenker, M. A., Ellis, R., et al. 2013, ApJ, 763, 12910.1088/0004-637X/763/2/129CrossRefGoogle Scholar
Stefanon, M., Labbé, I., Bouwens, R. J., et al. 2017b, ApJ, 851, 4310.3847/1538-4357/aa9a40CrossRefGoogle Scholar
Stefanon, M., Labbé, I., Bouwens, R. J., et al. 2019a, arXiv e-prints, arXiv:1902.10713Google Scholar
Stefanon, M.et al. 2019b - in prep., ApJGoogle Scholar
Tacchella, S., Bose, S., Conroy, C., et al. 2018, ApJ, 868, 9210.3847/1538-4357/aae8e0CrossRefGoogle Scholar
Trenti, M., Bradley, L. D., Stiavelli, M., et al. 2011, ApJL, 727, L3910.1088/2041-8205/727/2/L39CrossRefGoogle Scholar
Waters, D., Wilkins, S. M., Di Matteo, T., et al. 2016, MNRAS, 461, L5110.1093/mnrasl/slw100CrossRefGoogle Scholar
Yan, H., Yan, L., Zamojski, M. A., et al. 2011, ApJL, 728, L2210.1088/2041-8205/728/1/L22CrossRefGoogle Scholar