No CrossRef data available.
Published online by Cambridge University Press: 12 September 2016
We study star formation occurring in nuclear rings of barred-spiral galaxies by using hydrodynamic simulations with the prescriptions of star formation and feedback included. In models without spiral arms, the star formation rate (SFR) in a ring exhibits a strong primary burst at early time and declines to small values at late time. The early burst is caused by a rapid gas infall due to the bar growth, consuming most of the gas inside the bar regions. On the other hand, models with spiral arms show multiple starburst activities at late time caused by arm-induced gas inflows, provided that the arm pattern speed is slower than that of the bar. The SFR in models with spirals is larger by a factor of ~ 1.4–4.0 than that in the bar-only models, with larger values corresponding to stronger and slower arms. In all models, young star clusters in nuclear ring show an azimuthal age gradient only when the SFR is small, such that younger clusters tend to locate closer to the contact points between the ring and dust lanes.