Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T08:35:59.309Z Has data issue: false hasContentIssue false

Star formation history for the starburst dwarf galaxy in the Local Group, IC 10

Published online by Cambridge University Press:  09 June 2023

Mahtab Gholami
Affiliation:
School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran, 19568-36613, Iran email: [email protected]
Atefeh Javadi
Affiliation:
School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran, 19568-36613, Iran email: [email protected]
Jacco Th. van Loon
Affiliation:
Lennard-Jones Laboratories, Keele University, ST5 5BG, UK
Habib Khosroshahi
Affiliation:
School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran, 19568-36613, Iran email: [email protected]
Elham Saremi
Affiliation:
School of Astronomy, Institute for Research in Fundamental Sciences (IPM), Tehran, 19568-36613, Iran email: [email protected] Instituto de Astrofìsica de Canarias, C/ Vìa Làctea s/n, 38205 La Laguna, Tenerife, Spain Departamento de Astrofìsica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

IC 10 as a starburst dwarf galaxy in the Local Group (LG) has a large population of newly formed stars that are massive and intrinsically very bright in comparison with other LG galaxies. Using the Isaac Newton Telescope (INT) with the Wide Field Camera (WFC) in the i-band and V-band, we performed an optical monitoring survey to identify the most evolved asymptotic giant branch stars (AGBs) and red supergiant stars (RSGs) in this star-forming galaxy, which can be used to determine the star formation history (SFH). The E(B - V) as an effective factor for obtaining the precise magnitude of stars is measured for each star using a 2D dust map (SFD98) to obtain a total extinction for each star in both the i-band and V-band. We obtained the photometric catalog for 53579 stars within the area of 0.07 deg2 (13.5 kpc2), of which 762 stars are classified as variable candidates after removing the foreground stars and saturated ones from our catalog. To reconstruct the SFH for IC 10, we first identified 424 long-period variable (LPV) candidates within the area of two half-light radii (2rh) from the center of the galaxy. We estimated the recent star formation rate (SFR) at ∼ 0.32 yr-1 for a constant metallicity Z = 0.0008, showing the galaxy is currently undergoing high levels of star formation. Also, a total stellar mass of is obtained within 2rh for that metallicity.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Borissova, J., Georgiev, L., Rosado, M., et al., 2000, A&A, 363, 130 Google Scholar
Cosens, M., Wright, S. A., Murray, N., et al., 2022, ApJ, 929, 74 10.3847/1538-4357/ac52f3CrossRefGoogle Scholar
Gerbrandt, Stephanie A. N. and McConnachie, Alan W. and Irwin, Mike, 2015, MNRAS, 454, 1000 10.1093/mnras/stv2029CrossRefGoogle Scholar
Hashemi, S. A., Javadi, A., Th., van Loon J., 2018, MNRAS, 483, 4751 10.1093/mnras/sty3450CrossRefGoogle Scholar
Javadi, A., Th, van Loon J. ., Mirtorabi, M. T., 2011b, MNRAS, 414, 3394 10.1111/j.1365-2966.2011.18638.xCrossRefGoogle Scholar
Javadi, A., van Loon, J. T., Khosroshahi, H. G., Tabatabaei, F., Hamedani Golshan, R., & Rashidi, M., 2017, MNRAS, 464, 2103 10.1093/mnras/stw2463CrossRefGoogle Scholar
Kroupa, P., 2001, MNRAS, 322, 231 10.1046/j.1365-8711.2001.04022.xCrossRefGoogle Scholar
Lindegren, L., Klioner, S. A., Hernández, J., et al., 2021, A&A, 649, A2 Google Scholar
Massey, P. & Armandroff, T. E., 1995, AJ, 109, 2470 10.1086/117465CrossRefGoogle Scholar
Navabi, M., et al., 2021, ApJ, 910, 2, 127 10.3847/1538-4357/abdec1CrossRefGoogle Scholar
Richer, M. G., Bullejos, A., Borissova, J., McCall, M. L., Lee, H., Kurtev, R., Georgiev, L., Kingsburgh, R. L., Ross, R., Rosado, M., 2001, A&A, 370, 34 Google Scholar
Sakai, S., Madore, B. F., & Freedman, W. L. 1999, ApJ, 511, 671 10.1086/306716CrossRefGoogle Scholar
Saremi, E., et al., 2020, ApJ, 894, 135 10.3847/1538-4357/ab88a2CrossRefGoogle Scholar
Saremi, E., et al., 2021, ApJ, 923, 2, 164 10.3847/1538-4357/ac2d96CrossRefGoogle Scholar
Schlegel, D.J., Finkbeiner, D.P., & Davis, M., 1998, ApJ, 500, 525 10.1086/305772CrossRefGoogle Scholar
Stetson, P. B., 1987, PASP, 99, 191 10.1086/131977CrossRefGoogle Scholar