Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-18T11:21:23.607Z Has data issue: false hasContentIssue false

Stability constraints in modeling of multi-planet extrasolar systems

Published online by Cambridge University Press:  01 October 2007

Krzysztof Goździewski
Affiliation:
Toruń Centre for Astronomy, N. Copernicus University, PL-87-100 Toruń, Poland email: [email protected], [email protected], [email protected]
Cezary Migaszewski
Affiliation:
Toruń Centre for Astronomy, N. Copernicus University, PL-87-100 Toruń, Poland email: [email protected], [email protected], [email protected]
Arek Musieliński
Affiliation:
Toruń Centre for Astronomy, N. Copernicus University, PL-87-100 Toruń, Poland email: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present an analysis of high precision radial velocity (RV) observations of stars hosting multi-planet systems with Jovian companions. We use dynamical stability constraints and quasi-global methods of optimization. As an illustration, we present new results derived for the RV data of the Sun-like dwarfs HD 155358 and τ1 Gruis.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Arnold, V. I.Mathematical methods of classical mechanics New York: Springer, 1978.CrossRefGoogle Scholar
Barnes, R. & Greenberg, R.ApJL, 665:L67L70, 2007.CrossRefGoogle Scholar
Baluev, R. V.arXiv:0712.3862, 2007.Google Scholar
Beaugé, C., Michtchenko, T. A., & Ferraz-Mello, S.MNRAS, 365:11601170, 2006.Google Scholar
Beaugé, S., Sándor, Zs., Érdi, B., & Süli, Á.A&A, 463:359367, 2007.Google Scholar
Benettin, G., Galgani, L., Giorgilli, A., & Strelcyn, J.-M.Meccanica, pages 9–30, 1980.Google Scholar
Bevington, P. R. & Robinson, D. K.Data reduction and error analysis for the physical sciences. McGraw-Hill, 2003.Google Scholar
Butler, R. P. et al. Catalog of Nearby Exoplanets. ApJ, 646:505522, 2006.Google Scholar
Chambers, J. E.MNRAS, 304:793799, 1999.Google Scholar
Charbonneau, P.ApJs, 101309–+, 1995.CrossRefGoogle Scholar
Cincotta, P. M., Giordano, C. M., & Simó, C.Physica D, 182:151, 2003.CrossRefGoogle Scholar
Cincotta, P. M. & Simó, C.&s, 147:205228, 2000.Google Scholar
Cochran, W. D.Endl, M. R., Wittenmyer, A., & Bean, J. L.ApJ, 665:14071412, 2007.CrossRefGoogle Scholar
Correia, A. C. M. et al. A&A, 440:751758, 2005.Google Scholar
Dvorak, R., Freistetter, F., & Kurths, J.Lecture Notes in Physics, Springer Verlag, 683, 2005.Google Scholar
Ferraz-Mello, S., Michtchenko, T. A., & Beaugé, C. Chaotic Worlds: from Order to Disorder in Gravitational N-Body Dynamical Systems, 255–+, 2006.Google Scholar
Ferraz-Mello, S., Michtchenko, T. A., & Beaugé, C.ApJ, 621:473481, 2005.CrossRefGoogle Scholar
Ford, E. B.AJ, 129:17061717, 2005.Google Scholar
Ford, E. B., Lystad, V., & Rasio, F. A.Nature, 434:873876, 2005.Google Scholar
Ford, E. B. & Gaudi, B. S.ApJL, 652:L137L140, 2006.Google Scholar
Froeschlé, C.Celest. Mech. & Dyn. Astr., 34:95115, December 1984.Google Scholar
Goździewski, K., Breiter, S., & Borczyk, W.MNRAS, 710, 2008 (in press).Google Scholar
Goździewski, K. & Konacki, M.ApJ, 647:573586, 2006.Google Scholar
Goździewski, K., Maciejewski, A. J., & Migaszewski, C.ApJ, 657:546558, 2007.Google Scholar
Goździewski, K. & Migaszewski, C.A&A, 449:12191232, 2006.Google Scholar
Gregory, P. C.MNRAS, 374:13211333, 2007.CrossRefGoogle Scholar
Holman, M. J. & Murray, N. W.AJ, 112:1278+, 1996.Google Scholar
Ji, J. et al. ApJL, 591:L57L60, 2003.Google Scholar
Jones, H. R. A. et al. MNRAS, 341:948952, 2003.CrossRefGoogle Scholar
Laskar, J.Icarus, 88:266291, 1990.CrossRefGoogle Scholar
Laskar, J.Celest. Mech. & Dyn. Astr., 56:191196, 1993.CrossRefGoogle Scholar
Laughlin, G., Chambers, J. E, & Fischer, D.ApJ, 579:455467, 2002.CrossRefGoogle Scholar
Laughlin, G. & Chambers, J. E.ApJ, 551:L109L113, 2001.Google Scholar
Laughlin, G. & Chambers, J. E.AJ, 124:592600, 2002.CrossRefGoogle Scholar
Lecar, M. et al. Annual Rev. of Astron. & Astroph., 39:581631, 2001.Google Scholar
Lee, M. H., et al. ApJ, 641:11781187, 2006.Google Scholar
Lee, M. H. & Peale, S. J.ApJ, 592:12011216, 2003.CrossRefGoogle Scholar
Lissauer, J. J.Rev. Mod. Phys., 71 (3):835845, 1999.Google Scholar
Lissauer, J. J. & Rivera, E. J.ApJ, 554:11411150, 2001.CrossRefGoogle Scholar
Malhotra, R. In ASP Conf. Ser. 149: Solar System Formation and Evolution, pages 37+, 1998.Google Scholar
Marcy, G. W., et al. ApJ, 556:296301, 2001.Google Scholar
Mayor, M., et al. A&A, 2003. astro-ph/0310316.Google Scholar
Michtchenko, T. A. & Ferraz-Mello, S.ApJ, 122:474481, 2001.Google Scholar
Morbidelli, A.Modern celestial mechanics: aspects of Solar system dynamics. Taylor & Francis, 2002.Google Scholar
Murray, N. & Holman, M.Nature, 410:773779, 2001.CrossRefGoogle Scholar
Nesvorný, D. & Morbidelli, A.Celest. Mech. & Dyn. Astr., 71:243271, 1999.CrossRefGoogle Scholar
Pepe, F., et al. A&A, 462:769776, 2007.Google Scholar
Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P.Numerical Recipes in C. The Art of Scientific Computing. Cambridge Univ. Press, 1992.Google Scholar
Rivera, E. J. & Lissauer, J. J.ApJ, 402:558–392, 2001.Google Scholar
Robutel, P. & Laskar, J.Icarus, 152:428, 2001.Google Scholar
Šidlichovský, M. & Nesvorný, D.Celest. Mech. & Dyn. Astr., 65:137148, 1997.CrossRefGoogle Scholar
Smart, W. M.Text-Book on Spherical Astronomy. Cambridge Univ. Press, 1949.Google Scholar
Szebehely, V.Celest. Mech. & Dyn. Astr., 34:4964, December 1984.Google Scholar
Tinney, C. G., et al. ApJ, 647:594599, 2006.CrossRefGoogle Scholar
Vogt, S. S., et al. ApJ, 632:638658, 2005.CrossRefGoogle Scholar
Wisdom, J. & Holman, M.AJ, 102:15281538, 1991.Google Scholar