Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T03:34:43.275Z Has data issue: false hasContentIssue false

Spiral patterns beyond the optical radius: numerical simulations and synthetic HI observations

Published online by Cambridge University Press:  21 March 2017

Sergey Khoperskov
Affiliation:
GEPI, Observatoire de Paris, CNRS, Université Paris Diderot, 5 place Jules Janssen, 92190 Meudon, France Institute of Astronomy, Russian Academy of Sciences, 48 Pyatnitskaya st., 119017 Moscow, Russia email: [email protected]
Giuseppe Bertin
Affiliation:
Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The outer parts of many galaxy disks exhibit extended spiral arms far beyond the optical radius. To understand the nature and the origin of such outer spiral structure, we investigate the propagation in the outer gaseous regions of large-scale spiral density waves excited in the bright optical disk. By means of 3D hydrodynamical simulations, we show that spiral density waves, penetrating in the gas through the outer Lindblad resonance, can indeed give rise to relatively regular patterns outside the bright optical stellar disk. The amplitude of spiral structure increases rapidly with radius. Beyond the optical radius, spirals become nonlinear and develop small-scale features related to shear-induced instabilities. We also construct the synthetic 21-cm data cubes extracted from simulated gaseous disks. Our synthetic HI observations point to the existence of specific kinematical features related to the presence of spiral pattern perturbations that should be found in deep HI observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bertin, G., Lin, C. C., Lowe, S. A., & Thurstans, R. P. 1989a, ApJ, 338, 78 CrossRefGoogle Scholar
Bertin, G., Lin, C. C., Lowe, S. A., & Thurstans, R. P. 1989b, ApJ, 338, 104 Google Scholar
Bertin, G. & Lin, C. C. 1996 Spiral structure in galaxies: a density wave theory, The MIT Press, Cambridge, MA Google Scholar
Bertin, G. & Amorisco, N. 2010, A&A, 512, 17 Google Scholar
Bertin, G. 2014, Dynamics of Galaxies, 2nd Ed. Cambridge University Press, New York Google Scholar
Boomsma, R., Oosterloo, T. A., Fraternali, F., van der Hulst, J. M., & Sancisi, R. 2008, A&A, 490, 555 Google Scholar
Bullock, J. S. & Johnston, K. V. 2005, ApJ, 635, 931 Google Scholar
Butenko, M., Khoperskov, A., & Khoperskov, S. 2015, Baltic Astronomy, 24, 119 Google Scholar
Khoperskov, A. V., Eremin, M. A., Khoperskov, S. A., Butenko, M. A., & Morozov, A. G. 2012, Astronomy Reports, 56, 16 Google Scholar
Khoperskov, S. A., Vasiliev, E. O., Khoperskov, A. V., & Lubimov, V. N. 2014, Journal of Physics Conference Series, 510 (1), 012011 Google Scholar
Khoperskov, S. & Bertin, G. 2015a, MNRAS, 451, 2889 Google Scholar
Khoperskov, S. & Bertin, G. 2015b, Journal of Plasma Physics, 81 (6), 495810607 Google Scholar
Koribalski, B. S. & López-Sánchez, Á. R. 2015, MNRAS, 400, 1749 Google Scholar
Thilker, D. A., et al., 2007, ApJS, 173, 538 Google Scholar
Yíldíz, M. K., Serra, P., Oosterloo, T. A., Peletier, R. F., Morganti, R., Duc, P.-A., Cuillandre, J.-C., & Karabal, E. 2015, MNRAS, 451, 103 CrossRefGoogle Scholar