Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T12:17:13.417Z Has data issue: false hasContentIssue false

Spin-Up/Spin-Down Models

Published online by Cambridge University Press:  17 January 2013

R. Di Stefano
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA email: [email protected]
R. Voss
Affiliation:
Department of Astrophysics/IMAPP, Radboud University Nijmegen, PO Box 9010, NL-6500 GL Nijmegen, the Netherlands email: [email protected], [email protected]
J. Claeys
Affiliation:
Department of Astrophysics/IMAPP, Radboud University Nijmegen, PO Box 9010, NL-6500 GL Nijmegen, the Netherlands email: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Angular momentum transport plays an important role in mass transfer systems, and can significantly spin up an accreting star. When the accretor is a white dwarf (WD) on its way to becoming a Type Ia supernova (SN Ia), the spin up of the WD can have significant consequences for the appearance of the progenitor, the characteristics of the explosion and its aftermath, the geometry of the supernova remnant, and for single-degenerate models, the appearance of the donor star post-explosion. These consequences can be “game changers”, altering results that have long been taken for granted. We discuss key features of our spin-up/spin-down models and their implications. We relate our models to work still needed to address the difficult physical issues related to angular momentum transport and its effects on the properties and appearance of Type Ia supernova progenitors.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Anand, S. P. S. 1965, Proceedings of the National Academy of Science, 54, 23Google Scholar
Cumming, A., Zweibel, E., & Bildsten, L. 2001, ApJ, 557, 958Google Scholar
Di Stefano, R., Voss, R., & Claeys, J. S. W. 2011, ApJ, 738, L1Google Scholar
Hachisu, I. 1986, ApJS, 61, 479 244Google Scholar
Justham, S. 2011, ApJ, 730, L34Google Scholar
Lindblom, L. 1999, Phys.Rev.D, 60, 064007Google Scholar
Mereghetti, S., Tiengo, A., Esposito, P., et al. 2009, Science, 325, 1222Google Scholar
Meintjes, P. J. 2002, MNRAS, 336, 265CrossRefGoogle Scholar
Mereghetti, S., La Palombara, N., Tiengo, A., et al. 2011, ApJ, 737, 51Google Scholar
Ostriker, J. P. & Bodenheimer, P. 1968, ApJ, 151, 1089Google Scholar
Patterson, J. 1979, ApJ, 234, 978Google Scholar
Piro, A. L. 2008, ApJ, 679, 616CrossRefGoogle Scholar
Roxburgh, I. W. 1965, ZfA, 62, 134Google Scholar
Sedrakian, D. M., Shahabasyan, K. M., & Shahabasyan, M. K. 2006, Astrophysics, 49, 201CrossRefGoogle Scholar
Yoon, S.-C. & Langer, N. 2005, A&A, 435, 967Google Scholar
Zorotovic, M., Schreiber, M. R., & Gaensicke, B. T. 2011, A&A, 536, A42Google Scholar