No CrossRef data available.
Article contents
The spins of supermassive black holes
Published online by Cambridge University Press: 29 January 2021
Abstract
We present 1-second cadence, precise optical observations from SOFIA and Palomar of a sample of nearby supermassive black holes. The observations were taken to identify the shortest timescale variability in the nuclear photometry which may be associated with instabilities in the accretion flow in the immediate vicinity of the black hole. The shortest timescale variability, if associated with the radius of the innermost stable circular orbit (ISCO), can then be used to estimate the spin of the black hole. Despite 1% precision photometry, we obtained a non-detection of any significant variability in the nucleus of M32 (Mbh ∼ 2.5 × 106 Mȯ). Given the density of the stellar cusp, this argues for a scenario where 1000 Msun seed black holes formed from the coalescence of less massive black holes, which then accrete the gas produced by stellar interactions/winds. In more luminous systems however, we find a significant deection of variability and present hypotheses to explain the signal and thereby the origin of supermassive black holes.
- Type
- Contributed Papers
- Information
- Proceedings of the International Astronomical Union , Volume 15 , Symposium S356: Nuclear Activity in Galaxies Across Cosmic Time , October 2019 , pp. 255
- Copyright
- © The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union