Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T12:10:19.887Z Has data issue: false hasContentIssue false

Spectroscopic UV observations of M1.0 class solar flare from IRIS satellite

Published online by Cambridge University Press:  09 September 2016

Viacheslav M Sadykov
Affiliation:
New Jersey Institute of Technology, Newark, NJ 07102, USA email: [email protected]
Alexander G Kosovichev
Affiliation:
New Jersey Institute of Technology, Newark, NJ 07102, USA email: [email protected] NASA Ames Research Center, Moffet Field, CA 94035, USA
Ivan N Sharykin
Affiliation:
Space Research Institute (IKI), Moscow 117997, Russia
Santiago Vargas Dominguez
Affiliation:
Observ. Astron. Univ. Nacional de Colombia, Bogotá 111321, Colombia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This work presents an analysis of UV spectroscopic observations from the IRIS satellite of an M1.0 class flare occurred on 12 June 2014 in active region NOAA 12087. Our analysis of the IRIS spectra and Slit-Jaw images revealed presence of a strongly redshifted chromospheric jet before the flare. We also found strong emission of the chromospheric lines, and studied the C II 1334.5 Å line emission distribution in details. A blueshift of the Fe XXI line across the flaring region corresponds to evaporation flows of the hot chromospheric plasma with a speed of 50 km/s. Although the enhancement of the C II line integrated redshift correlates with the flare X-ray emission, we classify the evaporation as of a “gentle” type because of its long time scale and subsonic velocities. Analysis of X-ray data from the RHESSI satellite showed that both, an injection of accelerated particles and a heat flux from the energy release site can explain the energetics of the observed event.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Antiochos, S. K. & Sturrock, P. A. 1978, ApJ, 220, 1137 Google Scholar
Bornmann, P. L., Speich, D., Hirman, J., et al. 1996, SPIE Conf. Ser., 2812, 291 Google Scholar
Brosius, J. W. & Phillips, K. J. H. 2004, ApJ, 613, 580 CrossRefGoogle Scholar
De Pontieu, B., Title, A. M., Lemen, J. R., et al. 2014, SoPh, 289, 2733 Google Scholar
Doschek, G. A., & Warren, H. P., & Young, P. R. 2013, ApJ, 767, 55 Google Scholar
Goode, P. R., et al. 2010, Astronomische Nachrichten, 331, 620 Google Scholar
Kumar, P., Yurchyshyn, V., Wang, H., & Cho, K.-S. 2015, ApJ, 809, 83 Google Scholar
Lemen, J. R., Title, A. M., Akin, D. J., et al. 2012, SoPh, 275, 17 Google Scholar
Lin, R. P., Dennis, B. R., Hurford, G. J., et al. 2002, SoPh, 2010, 3 Google Scholar
Milligan, R. O., Gallagher, P. T., Mathioudakis, M., & Keenan, F. P., ApJL, 642, L169 Google Scholar
Milligan, R. O. & Dennis, B. R. 2009, ApJ, 699, 968 Google Scholar
Milligan, R. O. 2015, ArXiv e-print, 1501.04829Google Scholar
Sadykov, V. M., et al. 2014, ArXiv e-print, 1412.0172v1Google Scholar
Sadykov, V. M., et al. 2015, ApJ, 805, 167 Google Scholar
Scherrer, P. H., Schou, J., Bush, R. I., Kosovichev, A. G., et al. 2012, ApJ, 275, 207 Google Scholar
Spitzer, L. & Härm, R. 1953, Phys.Rev., 89, 977 Google Scholar
Zarro, D. M. & Lemen, J. R. 1988, ApJ, 329, 456 Google Scholar