Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T15:19:00.987Z Has data issue: false hasContentIssue false

Spectroscopic studies of stellar populations in globular clusters and field stars: Implications for globular cluster and Milky Way halo formation

Published online by Cambridge University Press:  11 March 2020

Raffaele Gratton*
Affiliation:
INAF-Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, 35122 Padova (Italy) email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review spectroscopic results concerning multiple stellar populations in globular clusters. The cluster initial mass is the most important parameter determining the fraction of second generation stars. The threshold for the onset of the multiple population phenomenon is 1–3×105 M. Nucleosynthesis is influenced by metallicity: Na/O and Mg/Al anti-correlations are more extended in metal-poor than in metal-rich clusters. Massive clusters are more complex systems than the smaller ones, with several populations characterized by different chemical compositions. The high Li abundance observed in the intermediate second generation stars strongly favours intermediate mass AGB stars as polluters for this class of stars; however, it is well possible that the polluters of extreme second generation stars, that often do not have measurable Li, may be fast rotating massive stars or super-massive stars. The mass budget factor should be a function of the cluster mass, and needs to be large only in massive clusters.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bastian, N. & Lardo, C. 2018, ARA&A, 56, 83CrossRefGoogle Scholar
Baumgardt, H. & Hilker, M. 2018, MNRAS, 478, 1520CrossRefGoogle Scholar
Baumgardt, H., Hilker, M., Sollima, A., & Bellini, A. 2019, MNRAS, 482, 5138CrossRefGoogle Scholar
Bekki, K., Campbell, S. W., Lattanzio, J. C., & Norris, J. E. 2007, MNRAS, 377, 335CrossRefGoogle Scholar
Bekki, K. & Freeman, K. C. 2003, MNRAS, 346, L11CrossRefGoogle Scholar
Beuther, H., Churchwell, E. B., McKee, C. F., & Tan, J. C. 2007, Protostars and Planets V, 165Google Scholar
Carretta, E., Bragaglia, A., Gratton, R., & Lucatello, S. 2009a, A&A, 505, 139Google Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2010, ApJL, 714, L7CrossRefGoogle Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2009b, A&A, 505, 117Google Scholar
D’Antona, F., D’Ercole, A., Carini, R., Vesperini, E., & Ventura, P. 2012, MNRAS, 426, 1710CrossRefGoogle Scholar
de Mink, S. E., Pols, O. R., Langer, N., & Izzard, R. G. 2009, A&A, 507, L1Google Scholar
Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ekström, S. 2007, A&A, 464, 1029Google Scholar
Denisenkov, P. A. & Denisenkova, S. N. 1989, Astronomicheskij Tsirkulyar, 1538, 11Google Scholar
Denissenkov, P. A. & Hartwick, F. D. A. 2014, MNRAS, 437, L21CrossRefGoogle Scholar
D’Ercole, A., Vesperini, E., D’Antona, F., McMillan, S. L. W., & Recchi, S. 2008, MNRAS, 391, 825CrossRefGoogle Scholar
D’Orazi, V., Angelou, G. C., Gratton, R. G., et al. 2014, ApJ, 791, 39CrossRefGoogle Scholar
D’Orazi, V., Gratton, R. G., Angelou, G. C., et al. 2015, MNRAS, 449, 4038CrossRefGoogle Scholar
D’Orazi, V., Lucatello, S., Gratton, R., et al. 2010, ApJL, 713, L1CrossRefGoogle Scholar
D’Orazi, V. & Marino, A. F. 2010, ApJL, 716, L166CrossRefGoogle Scholar
Gieles, M., Charbonnel, C., Krause, M. G. H., et al. 2018, MNRAS, 478, 2461CrossRefGoogle Scholar
Gratton, R., Sneden, C., & Carretta, E. 2004, ARA&A, 42, 385CrossRefGoogle Scholar
Gratton, R. G., Bonifacio, P., Bragaglia, A., et al. 2001, A&A, 369, 87Google Scholar
Gratton, R. G., Carretta, E., & Bragaglia, A. 2012, A&AR, 20, 50Google Scholar
Gratton, R. G., Johnson, C. I., Lucatello, S., D’Orazi, V., & Pilachowski, C. 2011, A&A, 534, A72Google Scholar
Gratton, R. G., Bragaglia, A., Carretta, E., D’Orazi, V., Lucatello, S., & Sollima, A. 2019, A&ARv, 27, 8Google Scholar
Gruyters, P., Nordlander, T., & Korn, A. J. 2014, A&A, 567, A72Google Scholar
Hosek, Jr., M. W., Lu, J. R., Anderson, J., et al. 2019, ApJ, 870, 44CrossRefGoogle Scholar
Langer, G. E., Hoffman, R., & Sneden, C. 1993, PASP, 105, 301CrossRefGoogle Scholar
Lind, K., Primas, F., Charbonnel, C., Grundahl, F., & Asplund, M. 2009, A&A, 503, 545Google Scholar
Marino, A. F., Milone, A. P., Renzini, A., et al. 2019, MNRAS, 487, 3815CrossRefGoogle Scholar
Martocchia, S., Niederhofer, F., Dalessandro, E., et al. 2018, MNRAS, 477, 4696CrossRefGoogle Scholar
Milone, A. P., Marino, A. F., Bedin, L. R., et al. 2017, MNRAS, 469, 800CrossRefGoogle Scholar
Milone, A. P., Piotto, G., Bedin, L. R., et al. 2012, ApJ, 744, 58CrossRefGoogle Scholar
Monaco, L., Villanova, S., Bonifacio, P., et al. 2012, A&A, 539, A157Google Scholar
Mucciarelli, A., Salaris, M., & Bonifacio, P. 2012, MNRAS, 419, 2195CrossRefGoogle Scholar
Mucciarelli, A., Salaris, M., Lovisi, L., et al. 2011, MNRAS, 412, 81CrossRefGoogle Scholar
Nataf, D. M., Wyse, R. F. G., Schiavon, R. P., et al. 2019, AJ, 158, 14CrossRefGoogle Scholar
Pasquini, L., Bonifacio, P., Molaro, P., et al. 2005, A&A, 441, 549Google Scholar
Prantzos, N. & Charbonnel, C. 2006, A&A, 458, 135Google Scholar
Prantzos, N., Charbonnel, C., & Iliadis, C. 2017, A&A, 608, A28Google Scholar
Renzini, A., D’Antona, F., Cassisi, S., et al. 2015, MNRAS, 454, 4197CrossRefGoogle Scholar
Suntzeff, N. B. & Kraft, R. P. 1996, AJ, 111, 1913CrossRefGoogle Scholar
Vanbeveren, D., Mennekens, N., & De Greve, J. P. 2012, A&A, 543, A4Google Scholar
Ventura, P., D’Antona, F., Mazzitelli, I., & Gratton, R. 2001, ApJL, 550, L65CrossRefGoogle Scholar