Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T10:46:32.860Z Has data issue: false hasContentIssue false

Spectroscopic evidence of multiple populations in globular clusters

Published online by Cambridge University Press:  05 March 2015

R. Gratton
Affiliation:
INAF-Osservatorio Astronomico di Padova
S. Lucatello
Affiliation:
INAF-Osservatorio Astronomico di Padova
E. Carretta
Affiliation:
INAF-Osservatorio Astronomico di Bologna
A. Bragaglia
Affiliation:
INAF-Osservatorio Astronomico di Bologna
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review spectroscopic evidence of multiple stellar populations in globular clusters. First, we lay down the basic data: the C-N, Na-O, Mg-Al anti-correlations among red giants and main sequence stars, and discuss how they appear to be general properties of globular clusters, in spite of cluster-to-cluster differences. We will then describe what is currently known about He from spectroscopy. We will then present the implications and current observations for the interpretation of the horizontal branches, showing that the multiple population phenomenon is strongly related to the distribution of stars along them. We will briefly mention the spectroscopic evidence related to some less understood cases, like the clusters with multiple subgiant branches. Finally, we summarize the relation between multiple populations and general properties for globular clusters, and their implications for the formation scenario.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Bedin, L. R., et al., 2004, ApJ, 605, L125CrossRefGoogle Scholar
Bragaglia, A., et al., 2010, A&A, 519, 60Google Scholar
Briley, M., et al., 1996, Nature, 383, 604Google Scholar
Charbonnel, C., et al., 1998, A&A, 332, 204Google Scholar
Carretta, E., 2006, AJ, 131, 1766CrossRefGoogle Scholar
Carretta, E., et al., 2006, A&A, 450, 523Google Scholar
Carretta, E., et al., 2007, A&A, 464, 927Google Scholar
Carretta, E., et al., 2009a, A&A, 505, 117Google Scholar
Carretta, E., et al., 2009b, A&A, 505, 139Google Scholar
Carretta, E., et al. 2010, A&A, 516, 55Google Scholar
Denisenkov, P. A. & Denisenkova, S. N. 1989, A. Tsir., 1538, 11Google Scholar
D'Ercole, A., et al. 2008, MNRAS, 391, 825CrossRefGoogle Scholar
Gratton, R. G., et al., 2000, A&A, 358, 671Google Scholar
Gratton, R. G., et al., 2001, A&A, 369, 87Google Scholar
Gratton, R. G., et al., 2004, ARA&A, 42, 38Google Scholar
Gratton, R. G., et al., 2010, A&A, 517, 8Google Scholar
Gratton, R. G., et al., 2012, A&ARv, 20, 50Google Scholar
Martell, S. L. & Grebel, E. K. 2010, A&A, 519, 14Google Scholar
Pasquini, L., et al., 2011, A&A, 531, 35Google Scholar
Piotto, G. 2009, in IAUS 258, 233Google Scholar
Piotto, G., et al., 2007, ApJ, 661, L53Google Scholar
Schaerer, D. & Charbonnel, C., 2011, MNRAS 413, 2297Google Scholar
Vesperini, E., et al., 2010, ApJ, 718, L112CrossRefGoogle Scholar