Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T10:58:15.258Z Has data issue: false hasContentIssue false

Spectroscopic Detection of Alfvénic MHD Waves in the Sunspot Chromosphere

Published online by Cambridge University Press:  28 September 2023

Jongchul Chae*
Affiliation:
Seoul National University, Seoul, Korea
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Alfvénic waves are regarded as an important process in understanding coronal heating, solar wind acceleration, and the fractionization of low first-ionization-potential (FIP) elements. Recently, significant progresses have been made in the detection of propagating Alfvénic waves in the solar chromosphere using two different methods: the imaging method and the spectroscopic method. The imaging method detects Alfvénic waves that oscillate in the direction perpendicular to the line of sight, and the spectroscopic method, those that oscillates in the line of sight direction. We have applied the spectroscopic method to the imaging spectral data taken by the FISS on GST at Big Bear. As a result, we detected a number of propagating Alfvénic wave packets, and found that there are two distinct groups: three-minute period waves, and ten-minute period waves.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Alfvén, H. 1947, MNRAS, 107, 211 CrossRefGoogle Scholar
Chae, J., Cho, K., Kang, J., et al. 2021 a, Journal of Korean Astronomical Society, 54, 139 Google Scholar
Chae, J., Cho, K., Lim, E.-K., & Kang, J. 2022, ApJ, 933, 108 CrossRefGoogle Scholar
Chae, J., Cho, K., Nakariakov, V. M., Cho, K.-S., & Kwon, R.-Y. 2021 b, ApJ Letters, 914, L16CrossRefGoogle Scholar
Chae, J., Madjarska, M. S., Kwak, H., & Cho, K. 2020, A&A, 640, A45 CrossRefGoogle Scholar
Chae, J., Park, H.-M., Ahn, K., et al. 2013, Solar Phys., 288, 1 Google Scholar
Cranmer, S. R. & van Ballegooijen, A. A. 2005, ApJ Suppl., 156, 265 CrossRefGoogle Scholar
De Pontieu, B., McIntosh, S. W., Carlsson, M., et al. 2007, Science, 318, 1574 CrossRefGoogle Scholar
Giovanelli, R. 1975, Solar Phys., 44, 299 Google Scholar
He, J. S., Tu, C. Y., Marsch, E., et al. 2009, A&A, 497, 525 CrossRefGoogle Scholar
Jess, D. B., Pascoe, D. J., Christian, D. J., et al. 2012, ApJ Letters, 744, L5 CrossRefGoogle Scholar
Laming, J. M. 2004, ApJ, 614, 1063 CrossRefGoogle Scholar
Litwin, C. & Rosner, R. 1998, ApJ Letters, 506, L143 CrossRefGoogle Scholar
Morton, R. J., Mooroogen, K., & Henriques, V. M. J. 2021, Philosophical Transactions of the Royal Society of London Series A, 379, 20200183 Google Scholar
Osterbrock, D. E. 1961, ApJ, 134, 347 CrossRefGoogle Scholar
Pietarila, A., Aznar Cuadrado, R., Hirzberger, J., & Solanki, S. K. 2011, ApJ, 739, 92 CrossRefGoogle Scholar
Van Doorsselaere, T., Nakariakov, V. M., & Verwichte, E. 2008, ApJ Letters, 676, L73 CrossRefGoogle Scholar