Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T04:54:52.277Z Has data issue: false hasContentIssue false

Spectral study of scattered light by interstellar dust grains

Published online by Cambridge University Press:  10 June 2020

Kei Sano*
Affiliation:
Kwansei Gakuin University, 2-1, Gakuen, Sanda, Hyogo email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Interstellar dust is traced by not only thermal emission but also scattered light. The scattered light spectrum observed from ultraviolet (UV) to near-infrared (IR) is useful to constrain some dust properties, such as size distribution, albedo, and composition. Milky Way Galaxy is a unique environment to observe the diffuse scattered light because we can extract it by removing the contribution of starlight. We have observed the UV to near-IR scattered light with space instruments, including Diffuse Infrared Background Experiment (DIRBE), Hubble Space Telescope (HST), and Multi-purpose Infra-Red Imaging System (MIRIS). The scattered light spectrum is marginally consistent with prediction from a recent dust model including carbonaceous and silicate grains with polycyclic aromatic hydrocarbon (PAH). Based on the MIRIS observation of a diffuse cloud, we compare the scattered light color with the dust model with or without grains larger than 1 micrometer. The result shows that the color is consistent with the model without the large grains, which is consistent with recent simulations of dust growth in low-density regions. However, some observations have shown the spectral excess at ∼ 0.6 micrometer wavelength, suggesting the presence of extended red emission (ERE) which cannot be explained by the conventional dust model.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Arai, T., Matsuura, S., Bock, J., Cooray, A., Kim, M. G., Lanz, A., Lee, D. H., Sano, K., et al. 2015, ApJ, 806, 69CrossRefGoogle Scholar
Brandt, T. D. & Draine, B. T. 2012, ApJ, 744, 129CrossRefGoogle Scholar
Han, W., Lee, D. H., Jeong, W. S., Park, Y., Moon, B., Park, S. J., Pyo, J., Kim, I. J., et al. 2014, PASP, 126, 85310.1086/678130CrossRefGoogle Scholar
Ienaka, N., Kawara, K., Matsuoka, Y., Sameshima, H., Oyabu, S., Tsujimoto, T., & Peterson, B. A. 2013, ApJ, 767, 80CrossRefGoogle Scholar
Indebedouw, R., Mathis, J. S., Babler, B. L., Meade, M. R., Watson, C., Whitney, B. A., Wolff, M. J., Wolfire, M. G., et al. 2005, ApJ, 619, 931CrossRefGoogle Scholar
Kawara, K., Matsuoka, Y., Sano, K., Brandt, T. D., Sameshima, H., Tsumura, K., Oyabu, Y., & Ienaka, N. 2017, PASJ, 69, 3110.1093/pasj/psx003CrossRefGoogle Scholar
Li, A. & Draine, B. T. 2002, ApJ, 564, 803CrossRefGoogle Scholar
Nishiyama, S., Tamura, M., Hatano, H., Kato, D., Tanabe, T., Sugitani, K., & Nagata, T. 2009, ApJ, 696, 1407CrossRefGoogle Scholar
Sano, K., Kawara, K., Matsuura, S., Kataza, H., Arai, T., & Matsuoka, Y. 2015, ApJ, 811, 77CrossRefGoogle Scholar
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525CrossRefGoogle Scholar
Wang, S., Li, A., & Jiang, B. W. 2015, ApJ, 811, 38CrossRefGoogle Scholar
Weingartner, J. C. & Draine, B. T. 2001, ApJ, 548, 29610.1086/318651CrossRefGoogle Scholar
Zubko, V., Dwek, E., & Arendt, R. G. 2004, ApJ, 152, 211Google Scholar